Advertisement

Human Immune Response Triggered by Entamoeba histolytica in a 3D-Intestinal Model

Conference paper
  • 144 Downloads

Abstract

Entamoeba histolytica, the agent of amoebiasis, colonizes the human colon and can invade the lining of the colon to disseminate in the deep layers of the intestine. Amoebiasis mainly affects poor people in developing countries, where the barriers between human feces and food or water are inadequate. Humans are the only reservoir of E. histolytica and are the sole target organism of the development of the disease, which limits our knowledge of the crosstalk between the colon and the parasite, especially during the acute phase of infection. In the present work, we constructed an in vitro model of intestinal epithelium that includes an immune component to mimic the immune response against pathogenic microorganisms such as E. histolytica. Using this model and leading-edge technologies, including tissue and cell imaging, transcriptomics, proteomics and ELISA, we investigated the early stages of amoebic infection, in particular, the early immune response. The data obtained highlight the importance of several previously showed virulence markers in patients and experimental models. In addition, we underscored the involvement of other factors that appear to be key regulators of gene expression in the cellular stress responses against amoebiasis and we found novel regulatory mechanisms used by this parasite to modulate the immune response and survive within the human intestine.

Keywords

Entamoeba histolytica 3D-intestinal model Cytokines Mucin Transcriptomics  Proteomics 

Abbreviations

3D

Three-dimensional

ECM

Extracellular matrix

IL-8

Interleukin-8

TNF-α

Tumor Necrosis Factor alpha

IL-1β

Interleukin-1beta

IL-6

Interleukin-6

PMA

Phorbol 12-myristate 13-acetate

TJ

Tight junctions

AJ

Adherence junctions

PMA

Phorbol 12-myristate 13-acetate

MUC2

Mucin 2

NF-kβ

Nuclear factor-kβ

EhCP-A5

Amoebic cysteine protease A5

AP-1

Activating protein-1

IFN-γ

Interferon-γ

GM-CSF

Macrophage-colony stimulating factor

ELISA

Enzyme-linked immunosorbent assay

PAMPs

Pathogen-associated molecular patterns

LC-MS/MS proteomics

Liquid chromatography coupled to mass spectrometry

PI3K

Phosphoinositide 3-kinase

CSP

Surface amoebic protein

MMPs

Metalloproteinases

MIF

Macrophage migration inhibitory factor

SHG

Second Harmonic Generation signal

Notes

Acknowledgements

The authors gratefully acknowledge Professor Jost Enninga from the Dynamics of Host Pathogen Interactions Unit, Institut Pasteur, Paris, France, for his kind supply of the cell lines, Caco-2/TC7 and HT29-MTX. Special thanks are due to Maria Manich, BIA Unit-Institut Pasteur, for her support in laboratory organization. The authors express their gratitude to all members of Icy software group from BIA Unit-Institut Pasteur, Paris, France, for their help in image analysis. We acknowledge the generous support of “DIM Ile de France” for the support in the acquisition of the two-photon microscope.

Funding

The project has received funding from the European ERA-NET Infect-ERA program AMOEBAC (French National Agency for Research (ANR) grants ANR-14-IFEC-0001-01 and ANR-14-IFEC-0001-02). Biomics Platform (Institute Pasteur) is supported by France Génomique (ANR-10-INBS-09-09) and IBISA. AAR is a recipient of Research Career Development Awards from Fundación-IMSS, México. SCC received a postdoctoral fellowship with number 173697 from the program S190-Conacyt, 2017, Mexico.

Conflict of Interest

All the authors declare no potential conflicts of interest.

References

  1. Aguilar Rojas, A., Castellanos Castro, S., Matondo, M., Giai Gianetto, Q., Varet, H., Sismeiro, O., et al. (2020). Insights into amebiasis using a human 3D-intestinal model. Cellular Microbiology, 16, e13203.  https://doi.org/10.1111/cmi.13203.
  2. Bansal, D., Ave, P., Kerneis, S., Frileux, P., Boché, O., Baglin, A. C., et al. (2009). An ex-vivo human intestinal model to study Entamoeba histolytica pathogenesis. PLOS Neglected Tropical Diseases, 3, e551.PubMedPubMedCentralGoogle Scholar
  3. Blazquez, S., Guigon, G., Weber, C., Syan, S., Sismeiro, O., Coppée, J. Y., et al. (2008). Chemotaxis of Entamoeba histolytica towards the pro-inflammatory cytokine TNF is based on PI3K signalling, cytoskeleton reorganization and the Galactose/N-acetylgalactosamine lectin activity. Cellular Microbiology, 10, 1676–1686.PubMedGoogle Scholar
  4. Blazquez, S., Zimmer, C., Guigon, G., Olivo-Marin, J. C., Guillén, N., & Labruyère, E. (2006). Human tumor necrosis factor is a chemoattractant for the parasite Entamoeba histolytica. Infection and Immunity, 74, 1407–1411.PubMedPubMedCentralGoogle Scholar
  5. Blessmann, J., Ali, I. K., Nu, P. A., Dinh, B. T., Viet, T. Q., Van, A. L., et al. (2003). Longitudinal study of intestinal Entamoeba histolytica infections in asymptomatic adult carriers. Journal of Clinical Microbiology, 41, 4745–4750.PubMedPubMedCentralGoogle Scholar
  6. Chadee, K., Petri, W. A., Innes, D. J., & Ravdin, J. I. (1987). Rat and human colonic mucins bind to and inhibit adherence lectin of Entamoeba histolytica. Journal of Clinical Investigation, 80, 1245–1254.PubMedPubMedCentralGoogle Scholar
  7. Chitra, S., Ganesan, N., & Lokeswari, T. S. (2014). Comparison of differentiation to macrophages in isolated monocytes from human peripheral blood and THP1 cells. Sri Ramachandra Journal of Medicine, 7(1).Google Scholar
  8. Cobo, E. R., Holani, R., Moreau, F., Nakamura, K., Ayabe, T., Mastroianni, J. R., et al. (2018). Entamoeba histolytica alters ileal Paneth cell functions in intact and Muc2 mucin deficiency. Infection and Immunity, 86, e00208–e00218.PubMedPubMedCentralGoogle Scholar
  9. Cornick, S., Moreau, F., Gaisano, H. Y., & Chadee, K. (2017). Entamoeba histolytica-induced mucin exocytosis is mediated by VAMP8 and is critical in mucosal innate host defense. MBio, 8, e01317–e01323.Google Scholar
  10. Diaz-Valencia, J. D., Pérez-Yépez, E. A., Ayala-Sumuano, J. T., Franco, E., & Meza, I. (2015). A surface membrane protein of Entamoeba histolytica functions as a receptor for human chemokine IL-8: its role in the attraction of trophozoites to inflammation sites. International Journal for Parasitology, 45, 915–923.PubMedGoogle Scholar
  11. Dickson-Gonzalez, S. M., de Uribe, M. L., & Rodriguez-Morales, A. J. (2009). Polymorphonuclear neutrophil infiltration intensity as consequence of Entamoeba histolytica density in amebic colitis. Surgical Infections, 10, 91–97.PubMedGoogle Scholar
  12. Dutton, J. S., Hinman, S. S., Kim, R., Wang, Y., & Allbritton, N. L. (2018) Primary cell-derived intestinal models: Recapitulating physiology. Trends in Biotechnology.Google Scholar
  13. Ghosh, S., Padalia, J., & Moonah, S. (2019). Tissue destruction caused by Entamoeba histolytica parasite: Cell death, inflammation, invasion, and the gut microbiome. Current Clinical Microbiology Reports, 6, 51–57.PubMedPubMedCentralGoogle Scholar
  14. Hernández-Nava, E., Cuellar, P., Nava, P., Chávez-Munguía, B., Schnoor, M., Orozco, E., et al. (2017). Adherens junctions and desmosomes are damaged by Entamoeba histolytica: Participation of EhCPADH complex and EhCP112 protease. Cellular Microbiology, 19, e12761.Google Scholar
  15. Huang, Z., Wang, Z., Long, S., Jiang, H., Chen, J., Zhang, J., et al. (2014). A 3-D artificial colon tissue mimic for the evaluation of nanoparticle–based drug delivery system. Molecular Pharmaceutics, 11, 2051–2061.PubMedGoogle Scholar
  16. Huston, C. D., Houpt, E. R., Mann, B. J., Hahn, C. S., & Petri, W. A. (2000). Caspase 3-dependent killing of host cells by the parasite Entamoeba histolytica. Cellular Microbiology, 2, 617–625.PubMedGoogle Scholar
  17. Jalili-Firoozinezhad, S., Gazzaniga, F. S., Calamari, E. L., Camacho, D. M., Fadel, C. W., Bein, A., et al. (2019). A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nature Biomedical Engineering, 3, 520–531.PubMedPubMedCentralGoogle Scholar
  18. Jeelani, G., & Nozaki, T. (2016). Entamoeba thiol-based redox metabolism: A potential target for drug development. Molecular and Biochemical Parasitology, 206, 39–45.PubMedGoogle Scholar
  19. Jo, E. K., Kim, J. K., Shin, D. M., & Sasakawa, C. (2016). Molecular mechanisms regulating NLRP3 inflammasome activation. Cellular & Molecular Immunology, 13, 148–159.Google Scholar
  20. Kim, H. J., Li, H., Collins, J. J., & Ingber, D. E. (2016). Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proceedings of the National Academy of Sciences of the United States of America, 113, E7–15.PubMedGoogle Scholar
  21. Kopitar-Jerala, N. (2017). The role of interferons in inflammation and inflammasome activation. Frontiers in Immunology, 8, 873.PubMedPubMedCentralGoogle Scholar
  22. Lee, Y. A., Nam, Y. H., Min, A., Kim, K. A., Nozaki, T., Saito-Nakano, Y., et al. (2014). Entamoeba histolytica-secreted cysteine proteases induce IL-8 production in human mast cells via a PAR2-independent mechanism. Parasite, 21, 1.PubMedPubMedCentralGoogle Scholar
  23. Leroy, A., Lauwaet, T., De Bruyne, G., Cornelissen, M., & Mareel, M. (2000). Entamoeba histolytica disturbs the tight junction complex in human enteric T84 cell layers. The FASEB Journal, 14, 1139–1146.PubMedGoogle Scholar
  24. Li, E., Stenson, W. F., Kunz-Jenkins, C., Swanson, P. E., Duncan, R., & Stanley, S. L. (1994). Entamoeba histolytica interactions with polarized human intestinal Caco-2 epithelial cells. Infection and Immunity, 62, 5112–5119.PubMedPubMedCentralGoogle Scholar
  25. Lin, J. Y., & Chadee, K. (1992). Macrophage cytotoxicity against Entamoeba histolytica trophozoites is mediated by nitric oxide from L-arginine. Journal of Immunology, 148, 3999–4005.Google Scholar
  26. Lotter, H., González-Roldán, N., Lindner, B., Winau, F., Isibasi, A., Moreno-Lafont, M., et al. (2009). Natural killer T cells activated by a lipopeptidophosphoglycan from Entamoeba histolytica are critically important to control amebic liver abscess. PLoS Pathogens, 5, e1000434.PubMedPubMedCentralGoogle Scholar
  27. MacMicking, J. D. (2012). Interferon-inducible effector mechanisms in cell-autonomous immunity. Nature Reviews Immunology, 12, 367–382.PubMedPubMedCentralGoogle Scholar
  28. Marie, C., & Petri, W. A. (2014). Regulation of virulence of Entamoeba histolytica. Annual Review of Microbiology, 68, 493–520.PubMedGoogle Scholar
  29. Meurens, F., Girard-Misguich, F., Melo, S., Grave, A., Salmon, H., & Guillén, N. (2009). Broad early immune response of porcine epithelial jejunal IPI-2I cells to Entamoeba histolytica. Molecular Immunology, 46, 927–936.PubMedGoogle Scholar
  30. Mittar, D., Paramban, R.,& McIntyre, C. (2011) Flow cytometry and high-content imaging to identify markers of monocyte-macrophage differentiation. BD Biosciences, 20.Google Scholar
  31. Moonah, S. N., Abhyankar, M. M., Haque, R., & Petri, W. A. (2014). The macrophage migration inhibitory factor homolog of Entamoeba histolytica binds to and immunomodulates host macrophages. Infection and Immunity, 82, 3523–3530.PubMedPubMedCentralGoogle Scholar
  32. Mortimer, L., Moreau, F., Cornick, S., & Chadee, K. (2015). The NLRP3 inflammasome is a pathogen sensor for invasive Entamoeba histolytica via activation of α5β1 integrin at the macrophage-amebae intercellular junction. PLoS Pathogens, 11, e1004887.PubMedPubMedCentralGoogle Scholar
  33. Nagaraja, S., & Ankri, S. (2018). Utilization of different omic approaches to unravel stress response mechanisms in the parasite Entamoeba histolytica. Frontiers in Cellular and Infection Microbiology, 8, 19.PubMedPubMedCentralGoogle Scholar
  34. Nakada-Tsukui, K., & Nozaki, T. (2016). Immune response of amebiasis and immune evasion by Entamoeba histolytica. Frontiers in Immunology, 7, 175.PubMedPubMedCentralGoogle Scholar
  35. Pineda, E., & Perdomo, D. (2017). Entamoeba histolytica under oxidative stress: What countermeasure mechanisms are in place. Cells, 6.Google Scholar
  36. Ploper, D., & De Robertis, E. M. (2015). The MITF family of transcription factors: Role in endolysosomal biogenesis, Wnt signaling, and oncogenesis. Pharmacological Research, 99, 36–43.PubMedGoogle Scholar
  37. Pontier, C., Pachot, J., Botham, R., Lenfant, B., & Arnaud, P. (2001). HT29-MTX and Caco-2/TC7 monolayers as predictive models for human intestinal absorption: Role of the mucus layer. Journal of Pharmaceutical Sciences, 90, 1608–1619.PubMedGoogle Scholar
  38. Ralston, K. S., & Petri, W. A. (2011). Tissue destruction and invasion by Entamoeba histolytica. Trends in Parasitology, 27, 254–263.PubMedPubMedCentralGoogle Scholar
  39. Sambuy, Y., De Angelis, I., Ranaldi, G., Scarino, M. L., Stammati, A., & Zucco, F. (2005). The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biology and Toxicology, 21, 1–26.PubMedGoogle Scholar
  40. Seydel, K. B., Li, E., Swanson, P. E., & Stanley, S. L. (1997). Human intestinal epithelial cells produce proinflammatory cytokines in response to infection in a SCID mouse-human intestinal xenograft model of amebiasis. Infection and Immunity, 65, 1631–1639.PubMedPubMedCentralGoogle Scholar
  41. Shin, W., & Kim, H. J. (2018). Intestinal barrier dysfunction orchestrates the onset of inflammatory host-microbiome cross-talk in a human gut inflammation-on-a-chip. Proceedings of the National Academy of Sciences of the United States of America, 115, E10539–E10547.PubMedPubMedCentralGoogle Scholar
  42. Shirley, D. T., Farr, L., Watanabe, K., & Moonah, S. (2018). A review of the global burden, new diagnostics, and current therapeutics for amebiasis. Open Forum Infectious Disease, 5, ofy161.Google Scholar
  43. Silvestre, A., Plaze, A., Berthon, P., Thibeaux, R., Guillen, N., & Labruyère, E. (2015). Entamoeba histolytica, a BspA family protein is required for chemotaxis toward tumour necrosis factor. Microbial Cell, 2, 235–246.PubMedPubMedCentralGoogle Scholar
  44. Thibeaux, R., Avé, P., Bernier, M., Morcelet, M., Frileux, P., Guillén, N., et al. (2014). The parasite Entamoeba histolytica exploits the activities of human matrix metalloproteinases to invade colonic tissue. Nature Communications, 5, 5142.PubMedGoogle Scholar
  45. Thibeaux, R., Weber, C., Hon, C. C., Dillies, M. A., Avé, P., Coppée, J. Y., et al. (2013). Identification of the virulence landscape essential for Entamoeba histolytica invasion of the human colon. PLoS Pathogens, 9, e1003824.PubMedPubMedCentralGoogle Scholar
  46. Ulm, H., Wilmes, M., Shai, Y., & Sahl, H. G. (2012). Antimicrobial host defensins—specific antibiotic activities and innate defense modulation. Frontiers in Immunology, 3, 249.PubMedPubMedCentralGoogle Scholar
  47. Varet, H., Shaulov, Y., Sismeiro, O., Trebicz-Geffen, M., Legendre, R., Coppée, J. Y., et al. (2018). Enteric bacteria boost defences against oxidative stress in Entamoeba histolytica. Scientific Reports, 8, 9042.PubMedPubMedCentralGoogle Scholar
  48. Wang, Y., Kim, R., Gunasekara, D. B., Reed, M. I., DiSalvo, M., Nguyen, D. L., et al. (2018). Formation of human colonic crypt array by application of chemical gradients across a shaped epithelial monolayer. Cellular and Molecular Gastroenterology Hepatology, 5, 113–130.Google Scholar
  49. Wang, Y., Kim, R., Sims, C. E., & Allbritton, N. L. (2019). Building a thick mucus hydrogel layer to improve the physiological relevance of in vitro primary colonic epithelial models. Cellular and Molecular Gastroenterology Hepatology, 8, 653–655.e5.Google Scholar
  50. Yu, Y., & Chadee, K. (1997). Entamoeba histolytica stimulates interleukin 8 from human colonic epithelial cells without parasite-enterocyte contact. Gastroenterology, 112, 1536–1547.PubMedGoogle Scholar
  51. Zavala, G. A., García, O. P., Camacho, M., Ronquillo, D., Campos-Ponce, M., Doak, C., et al. (2018). Intestinal parasites: Associations with intestinal and systemic inflammation. Parasite Immunology, 40, e12518.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institut Pasteur, Bioimage Analysis UnitParisFrance
  2. 2.Universidad Autónoma de la Ciudad de México, Colegio de Ciencias y HumanidadesCiudad de MéxicoMexico
  3. 3.Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Medicina ReproductivaCiudad de MéxicoMexico
  4. 4.Institut Pasteur, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Plateforme Protéomique, Centre de Ressources et Recherches Technologiques (C2RT), USR 2000 CNRSParisFrance
  5. 5.Institut Pasteur, Plateforme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT)ParisFrance
  6. 6.Institut Pasteur, Département de Biologie Computationnelle (USR 3756 IP CNRS), Hub Bioinformatique et BiostatistiqueParisFrance
  7. 7.Institut Pasteur, UTechS PBI, Centre de Ressources et Recherches Technologiques (C2RT)ParisFrance
  8. 8.Institut Pasteur, Experimental Neuropathology UnitParisFrance
  9. 9.Institut Pasteur, Centre National de la Recherche Scientifique-ERL9195ParisFrance

Personalised recommendations