Skip to main content

The Role of Host PKCα During Intracellular Cryptosporidium Infection

  • Conference paper
  • First Online:
Eukaryome Impact on Human Intestine Homeostasis and Mucosal Immunology
  • 508 Accesses

Abstract

Protein Kinase C-α (PKCα) is a serine/threonine kinase that has recently been associated with increased susceptibility in several enteric infections through regulation of host cell actin cytoskeleton. In the scope of Cryptosporidium infection, changes in PKCα expression and activity have been reported in vitro. Past studies have shown Cryptosporidium requires host cell actin polymerization during infection with the identification of some important mediators, [e.g. c-Src, PI3K, Cdc42, N-WASP, Arp 2/3 complex], however a potential mechanism between PKCα and regulation of actin has not been established. Hence, the aim of this review is to present an overview of the progress made thus far attempting to understand changes in host cell characteristics during Cryptosporidium infection and to propose the role of PKCα during this process. We report on findings in the field using techniques such as immunofluorescent imaging, RNA-seq, and transmission electron microscopy (TEM). Although the data linking PKCα and Cryptosporidium is limited in the field, the mechanism outlined is promising for PKCα as a potential target for treatment of cryptosporidiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

PKC:

Protein Kinase C

PKCα:

Protein Kinase C alpha-protein

CDPK1:

Calcium-dependent protein kinase 1

PKD3:

Protein Kinase D3

RNA-seq:

(RNA-sequencing

TEM:

Transmission electron microscopy

PRKCA :

Protein Kinase C alpha-gene

BKI:

Bumped-kinase Inhibitors

c-Src:

Proto-oncogene tyrosine-protein kinase Src

PI3K:

Phosphoinositide 3-kinase

Cdc42:

Cell Division Cycle 42

N-WASP:

Neural Wiskott-Aldrich syndrome protein

Arp 2/3:

Actin-related protein 2/3

C. parvum :

Cryptosporidium parvum

C. hominis :

Cryptosporidium hominis

PKCβ:

Protein Kinase C beta

JAK2:

Janus Kinase 2

Chk1/2:

Checkpoint Kinase 1/2

SI:

Small intestinal

PKCε:

Protein Kinase C epsilon

F-actin:

Filamentous actin

GTPase:

Guanosine-5′-triphosphate hydrolase enzyme

GEF:

Guanine nucleotide exchange factor

Aqp1:

Aquaporin 1

Sglt1:

Sodium/Glucose transporter 1

HTT:

Host-targeted therapies

FDA:

Food and drug administration

IEC:

Intestinal epithelial cell

EC50:

Effective concentration of inhibitor that reduced infection by half

IC50:

Inhibitory concentration where enzyme binding is reduced by half

References

  • Bonnin, A., Lapillonne, A., Petrella, T., Lopez, J., Chaponnier, C., Gabbiani, G., et al. (1999). Immunodetection of the microvillous cytoskeleton molecules Villin and Ezrin in the parasitophorous vacuole wall of Cryptosporidium Parvum (Protozoa: Apicomplexa). European Journal of Cell Biology, 78(11), 794–801.

    Article  CAS  Google Scholar 

  • Borowski, H., Clode, P. L., & Andrew Thompson, R. C. (2008). Active invasion and/or encapsulation? A reappraisal of host-cell parasitism by cryptosporidium. Trends in Parasitology, 24(11), 509–516.

    Article  Google Scholar 

  • Castellanos-Gonzalez, A., Sparks, H., Nava, S., Huang, W., Zhang, Z., Rivas, K., et al. (2016). A novel calcium-dependent kinase inhibitor, bumped kinase inhibitor 1517, Cures Cryptosporidiosis in immunosuppressed mice. The Journal of Infectious Diseases, 214(12), 1850–1855.

    Article  CAS  Google Scholar 

  • Chen, X.-M., Huang, B. Q., Splinter, P. L., Cao, H., Zhu, G., Mcniven, M. A., et al. (2003). Cryptosporidium Parvum invasion of biliary epithelia requires host cell tyrosine phosphorylation of cortactin via C-Src. Gastroenterology, 125(1), 216–228.

    Article  CAS  Google Scholar 

  • Chen, X.-M., Huang, B. Q., Splinter, P. L., Orth, J. D., Billadeau, D. D., McNiven, M. A., et al. (2004a). Cdc42 and the actin-related protein/neural Wiskott-Aldrich syndrome protein network mediate cellular invasion by cryptosporidium parvum. Infection and Immunity, 72(5), 3011.

    Article  CAS  Google Scholar 

  • Chen, X.-M., Splinter, P. L., Tietz, P. S., Huang, B. Q., Billadeau, D. D., & LaRusso, N. F. (2004b). Phosphatidylinositol 3-kinase and frabin mediate cryptosporidium parvum cellular invasion via activation of Cdc42. Journal of Biological Chemistry, 279(30), 31671–31678.

    Article  CAS  Google Scholar 

  • Chen, X.-M., O’Hara, S. P., Huang, B. Q., Splinter, P. L., Nelson, J. B., & LaRusso, N. F. (2005). Localized glucose and water influx facilitates Cryptosporidium Parvum cellular invasion by means of modulation of host-cell membrane protrusion. Proceedings of the National Academy of Sciences of the United States of America, 102(18), 6338–6343.

    Article  CAS  Google Scholar 

  • Elliott, D. A., Coleman, D. J., Lane, M. A., May, R. C., Machesky, L. M., & Clark, D. P. (2001). Cryptosporidium parvum infection requires host cell actin polymerization. Infection and Immunity, 69(9), 5940–5942.

    Article  CAS  Google Scholar 

  • Forney, J. R., DeWald, D. B., Yang, S., Speer, C. A., & Healey, M. C. (1999). A role for host phosphoinositide 3-kinase and cytoskeletal remodeling during cryptosporidium parvum infection. Infection and Immunity, 67(2), 844–852.

    Article  CAS  Google Scholar 

  • Grandage, V. L., Everington, T., Linch, D. C., & Khwaja, A. (2006). Gö6976 is a potent inhibitor of the JAK 2 and FLT3 Tyrosine kinases with significant activity in primary acute myeloid leukaemia cells. British Journal of Haematology, 135(3), 303–316.

    Article  CAS  Google Scholar 

  • Hashim, A., Clyne, M., Mulcahy, G., Akiyoshi, D., Chalmers, R., & Bourke, B. (2004). Host cell tropism underlies species restriction of human and bovine cryptosporidium parvum genotypes. Infection and Immunity, 72(10), 6125–6131.

    Article  CAS  Google Scholar 

  • Hashim, A., Mulcahy, G., Bourke, B., & Clyne, M. (2006). Interaction of cryptosporidium hominis and cryptosporidium parvum with primary human and bovine intestinal cells. Infection and Immunity, 74(1), 99–107.

    Article  CAS  Google Scholar 

  • Heo, I., Dutta, D., Schaefer, D. A., Iakobachvili, N., Artegiani, B., Sachs, N., et al. (2018). Modeling cryptosporidium infection in human small intestinal and lung organoids. Nature Microbiology, 3(7), 814–823.

    Article  CAS  Google Scholar 

  • Hulverson, M. A., Vinayak, S., Choi, R., Schaefer, D. A., Castellanos-Gonzalez, A., Vidadala, Rama S. R., et al. (2017). Bumped-kinase inhibitors for cryptosporidiosis therapy. The Journal of Infectious Diseases, 215(8), 1275–1284.

    Article  CAS  Google Scholar 

  • Kuhlenschmidt, T. B., Rutaganira, F. U., Long, S., Tang, K., Shokat, K. M., Kuhlenschmidt, M. S., et al. (2015). Inhibition of calcium-dependent protein kinase 1 (CDPK1) in vitro by pyrazolopyrimidine derivatives does not correlate with sensitivity of cryptosporidium parvum growth in cell culture. Antimicrobial Agents and Chemotherapy, 60(1), 570–579.

    Article  Google Scholar 

  • Liu, T.-L., Fan, X.-C., Li, Y.-H., Yuan, Y.-J., Yin, Y.-L., Wang, X.-T., et al. (2018). Expression profiles of MRNA and LncRNA in HCT-8 cells infected with Cryptosporidium Parvum IId subtype. Frontiers in Microbiology, 9, 1409.

    Article  Google Scholar 

  • Love, M. S., Beasley, F. C., Jumani, R. S., Wright, T. M., Chatterjee, A. K., Huston, C. D., Schultz, P. G., & McNamara, C. W. (2017) A high-throughput phenotypic screen identifies clofazimine as a potential treatment for cryptosporidiosis. PLoS Neglected Tropical Diseases, 11(2).

    Google Scholar 

  • Martiny-Baron, G., Kazanietz, M. G., Mischak, H., Blumberg, P. M., Kochs, G., Hug, H., et al. (1993). Selective inhibition of protein kinase C isozymes by the indolocarbazole Gö 6976. Journal of Biological Chemistry, 268(13), 9194–9197.

    CAS  PubMed  Google Scholar 

  • Mittal, R., Grati, M., Yan, D., & Liu, X. Z. (2016). Pseudomonas Aeruginosa activates PKC-alpha to invade middle ear epithelial cells. Frontiers in Microbiology, 7.

    Google Scholar 

  • Monzani, E., Bazzotti, R., Perego, C., & La Porta, C. A. M. (2009). AQP1 is not only a water channel: It contributes to cell migration through Lin7/Beta-Catenin. PLoS ONE, 4, (7).

    Google Scholar 

  • Nakashima, S. (2002). Protein kinase Cα (PKCα): Regulation and biological function. The Journal of Biochemistry, 132(5), 669–675.

    Article  CAS  Google Scholar 

  • Schaefer, D. A., Betzer, D. P., Smith, K. D., Millman, Z. G., Michalski, H. C., Menchaca, S. E., et al. (2016). Novel bumped kinase inhibitors are safe and effective therapeutics in the calf clinical model for cryptosporidiosis. The Journal of Infectious Diseases, 214(12), 1856–1864.

    Article  CAS  Google Scholar 

  • Song, J. C., Rangachari, P. K., & Matthews, J. B. (2002). Opposing effects of PKCα and PKCε on basolateral membrane dynamics in intestinal epithelia. American Journal of Physiology-Cell Physiology, 283(5), C1548–C1556.

    Article  CAS  Google Scholar 

  • Sukumaran, S. K., Quon, M. J., & Prasadarao, N. V. (2002). Escherichia coli K1 internalization via caveolae requires Caveolin-1 and protein kinase calpha interaction in human brain microvascular endothelial cells. The Journal of biological chemistry, 277(52), 50716–50724.

    Article  CAS  Google Scholar 

  • Voorhis, V., Wesley, C., Stone Doggett, J., Parsons, M., Hulverson, M. A., Choi, R., et al. (2017). Extended-spectrum antiprotozoal bumped kinase inhibitors: A review. Experimental Parasitology, 180(September), 71–83.

    Article  Google Scholar 

  • Vidadala, R. S., Rao, K. L., Rivas, K. K., Ojo, M. A., Hulverson, J. A., Zambriski, I. B., et al. (2016). Development of an orally available and Central Nervous System (CNS)-penetrant Toxoplasma Gondii Calcium-Dependent Protein Kinase 1 (TgCDPK1) inhibitor with minimal Human Ether-à-Go-Go-Related Gene (HERG) activity for the treatment of toxoplasmosis. Journal of Medicinal Chemistry, 59(13), 6531–6546.

    Article  CAS  Google Scholar 

  • Wojcik, G. L., Korpe, P., Marie, C., Mychaleckyj, J., Kirkpatrick, B. D., Rich, S. S., Concannon, P., et al. (2019). Genome-wide association study of cryptosporidiosis in infants implicates PRKCA. BioRxiv, October, 819052.

    Google Scholar 

  • Yang, L., & Yan, Y. (2014). Protein kinases are potential targets to treat inflammatory bowel disease. World Journal of Gastrointestinal Pharmacology and Therapeutics, 5(4), 209–217.

    Article  Google Scholar 

  • Yang, Y.-L., Buck, G. A., & Widmer, G. (2010). Cell sorting-assisted microarray profiling of host cell response to cryptosporidium parvum infection. Infection and Immunity, 78(3), 1040–1048.

    Article  CAS  Google Scholar 

  • Zhang, Z., Ojo, K. K., Vidadala, R., Huang, W., Geiger, J. A., Scheele, S., et al. (2013). Potent and selective inhibitors of CDPK1 from T. Gondii and C. Parvum based on a 5-Aminopyrazole-4-Carboxamide Scaffold. ACS Medicinal Chemistry Letters, 5(1), 40–44.

    Article  Google Scholar 

Download references

Compliance with Ethical Standards

Funding

This study was funded by Gates Cryptosporidium Grant #: OPP1160655 and Cryptosporidium Field Studies Grant#: R01AI043596.

Disclosure of Interests

All authors declare they have no conflicts of interest.

Human and animal studies discussed in this paper have been previously published. Informed consent for participation and publication was obtained from all individuals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chelsea Marie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McCowin, S., Marie, C. (2020). The Role of Host PKCα During Intracellular Cryptosporidium Infection. In: Guillen, N. (eds) Eukaryome Impact on Human Intestine Homeostasis and Mucosal Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-44826-4_15

Download citation

Publish with us

Policies and ethics