Skip to main content

Improving Human-Machine Interaction with a Digital Twin

Adaptive Automation in Container Unloading

  • Conference paper
  • First Online:
Dynamics in Logistics (LDIC 2020)

Part of the book series: Lecture Notes in Logistics ((LNLO))

Included in the following conference series:

Abstract

The unloading of containers is a tedious task that a decreasing number of workers is willing to take on. (Semi-)autonomous systems are already available but limited to clearly defined scenarios due to a rigid level of autonomy. This paper focuses on an adaptive concept for a human-centered semi-autonomous unloading process. First, available systems are analyzed regarding their level of autonomy and the integration of the human operator. Following this, a concept integrating the digital twin and adaptive automation is presented. The usage of a digital representation with adapting autonomy allows combining the strength of humans and machines. In the presented system, the operator uses his cognitive advantage to provide specific support when the machine reaches its limits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angrish, A., Starly, B., Lee, Y.S., Cohen, P.H.: A flexible data schema and system architecture for the virtualization of manufacturing machines (VMM). J. Manuf. Syst. 45, 236–247 (2017). https://doi.org/10.1016/j.jmsy.2017.10.003

    Article  Google Scholar 

  2. Ardanza, A., Moreno, A., Segura, Á., de la Cruz, M., Aguinaga, D.: Sustainable and flexible industrial human machine interfaces to support adaptable applications in the Industry 4.0 paradigm. Int. J. Prod. Res. 57(12), 4045–4059 (2019). https://doi.org/10.1080/00207543.2019.1572932

    Article  Google Scholar 

  3. Bastian Solutions: Robotic Truck Trailer - Case Loader/Unloader. Technical report Indianapolis (2018). https://www.bastiansolutions.com

  4. Bauer, W., Bender, M., Braun, M., Rally, P., Scholtz, O.: Lightweight robots in manual assembly – best to start simply! pp. 1–61, Fraunhofer IAO (2016)

    Google Scholar 

  5. BEUMER Group GmbH & Co: KG: BEUMER Parcel Picker. Technical report, Beckum (2019). https://www.beumergroup.com

  6. Cai, Y., Starly, B., Cohen, P., Lee, Y.S.: Sensor data and information fusion to construct digital-twins virtual machine tools for cyber-physical manufacturing. Procedia Manuf. 10, 1031–1042 (2017). https://doi.org/10.1016/j.promfg.2017.07.094

    Article  Google Scholar 

  7. Calefato, C., Montanari, R., Tango, F.: Advanced drivers assistant systems in automation. LNCS (including its subseries Lecture Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI)), LNCS (PART 2), vol. 4551, pp. 768–777 (2007)

    Google Scholar 

  8. Calefato, C., Montanari, R., Tesauri, F.: The adaptive automation design. In: Human Computer Interaction: New Developments. InTech (2008). https://doi.org/10.5772/5878

  9. Carton Mover. https://www.cartonmover.com

  10. Chu, Y.Y., Rouse, W.B.: Adaptive allocation of decisionmaking responsibility between human and computer in multitask situations. IEEE Trans. Syst. Man Cybern. 9(12), 769–778 (1979). https://doi.org/10.1109/TSMC.1979.4310128

    Article  Google Scholar 

  11. Copal Handling Systems: C2 Container Unloader. Technical report, Heerenberg (2019). https://www.copalhandlingsystems.com/products/copal-c2/

  12. Copal Handling Systems: Container Unloader C2 mobile. Technical report, Heerenberg (2019). https://www.copalhandlingsystems.com

  13. D’Addona, D.M., Bracco, F., Bettoni, A., Nishino, N., Carpanzano, E., Bruzzone, A.A.: Adaptive automation and human factors in manufacturing: an experimental assessment for a cognitive approach. CIRP Ann. 67(1), 455–458 (2018). https://doi.org/10.1016/j.cirp.2018.04.123

    Article  Google Scholar 

  14. Dodge, S., Karam, L.: A study and comparison of human and deep learning recognition performance under visual distortions. In: 26th International Conference on Computer Communications and Networks (ICCCN) (2017). https://doi.org/10.1109/ICCCN.2017.8038465

  15. Echelmeyer, W., Bonini, M., Rohde, M.: From manufacturing to logistics: development of a kinematic for autonomous unloading of containers. Adv. Mater. Res. 903, 245–251 (2014). https://doi.org/10.4028/www.scientific.net/AMR.903.245

    Article  Google Scholar 

  16. Endsley, M.R., Kaber, D.B.: Level of automation effects on performance, situation awareness and workload in a dynamic control task. Ergonomics 42(3), 462–492 (1999)

    Article  Google Scholar 

  17. Forster, D., Sheikh, A.S., Lücke, J.: Neural simpletrons: learning in the limit of few labels with directed generative networks. Neural Comput. 30(8), 2113–2174 (2018). https://doi.org/10.1162/neco_a_01100

    Article  MathSciNet  Google Scholar 

  18. Gombolay, M., Bair, A., Huang, C., Shah, J.: Computational design of mixed-initiative human-robot teaming that considers human factors: situational awareness, workload, and workflow preferences. Int. J. Robot. Res. 36(5–7), 597–617 (2017). https://doi.org/10.1177/0278364916688255

    Article  Google Scholar 

  19. Honeywell Intelligrated: Robotic Unloader, Technical report, Mason (2019). https://www.intelligrated.com

  20. Kaber, D.B., Perry, C.M., Segall, N., McClernon, C.K., Prinzel, L.J.: Situation awareness implications of adaptive automation for information processing in an air traffic control-related task. Int. J. Ind. Ergon. 36(5), 447–462 (2006). https://doi.org/10.1016/j.ergon.2006.01.008

    Article  Google Scholar 

  21. Kay, M.: Adaptive automation accelerates process development. BioProcess Int. 4(4), 70–76 (2006)

    Google Scholar 

  22. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital Twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine 51(11), 1016–1022 (2018). https://doi.org/10.1016/j.ifacol.2018.08.474

    Article  Google Scholar 

  23. Mortensen Ernits, R., Kunaschk, S., Rohde, M., Freitag, M.: Autonome Entladung von Kaffeesäcken aus Überseecontainern durch ein innovatives Greifverfahren. Ind. Manag. 31(6), 51–55 (2015)

    Google Scholar 

  24. Mortensen Ernits, R., Beinke, T., Freitag, M., Rohde, M.: Automatic unloading of coffee sacks out of sea containers – special pile situations and challenges for gripping. In: International Conference on Material Handling, Constructions and Logistics (MHCL 2019) (2019)

    Google Scholar 

  25. Negri, E., Fumagalli, L., Macchi, M.: A review of the roles of digital twin in CPS-based production systems. Procedia Manuf. 11, 939–948 (2017). https://doi.org/10.1016/j.promfg.2017.07.198

    Article  Google Scholar 

  26. Parasuraman, R., Bahri, T., Deaton, J.E., Morrison, J.G., Barnes, M.: Theory and design of adaptive automation in aviation systems. (Progress Rep. No. NAWCADWAR-92033-60), Naval Air Development Center Aircraft Division, Warminster, PA (1992)

    Google Scholar 

  27. Rouse, W.B.: Adaptive Allocation of decision making responsibility between supervisor and computer. In: Monitoring Behavior and Supervisory Control, pp. 295–306. Springer, Boston (1976). https://doi.org/10.1007/978-1-4684-2523-9_24

  28. Scerbo, M.W.: Adaptive automation. In: Neuroergonomics, pp. 239–252. Oxford University Press (2006). https://doi.org/10.1093/acprof:oso/9780195177619.003.0016

  29. Schluse, M., Priggemeyer, M., Atorf, L., Rossmann, J.: Experimentable digital twins-streamlining simulation-based systems engineering for industry 4.0. IEEE Trans. Ind. Inf. 14(4), 1722–1731 (2018). https://doi.org/10.1109/TII.2018.2804917

    Article  Google Scholar 

  30. Schmidtler, J., Knott, V., Hölzel, C., Bengler, K.: Human centered assistance applications for the working environment of the future. Occup. Ergon. 12(3), 83–95 (2015). https://doi.org/10.3233/OER-150226

    Article  Google Scholar 

  31. Sheridan, T.B., Parasuraman, R.: Human-automation interaction. Rev. Hum. Factors Ergon. 1(1), 89–129 (2005). https://doi.org/10.1518/155723405783703082

    Article  Google Scholar 

  32. Stoyanov, T., Vaskevicius, N., Mueller, C.A., Fromm, T., Krug, R., Tincani, V., Mojtahedzadeh, R., Kunaschk, S., Mortensen Ernits, R., Canelhas, D.R., Bonilla, M., Schwertfeger, S., Bonini, M., Halfar, H., Pathak, K., Rohde, M., Fantoni, G., Bicchi, A., Birk, A., Lilienthal, A.J., Echelmeyer, W.: No more heavy lifting: robotic solutions to the container unloading problem. IEEE Robot. Autom. Mag. 23(4), 94–106 (2016). https://doi.org/10.1109/MRA.2016.2535098

    Article  Google Scholar 

  33. UNCTAD: Quantity of loaded freight in international maritime trade from 1970 to 2017 (in million metric tons loaded). In: Statista. Statista Inc. (2018). https://www.statista.com/statistics/234698/loaded-freight-in-international-maritime-trade-since-1970/

  34. Vagia, M., Transeth, A.A., Fjerdingen, S.A.: A literature review on the levels of automation during the years. What are the different taxonomies that have been proposed? Appl. Ergon. 53, 190–202 (2016). https://doi.org/10.1016/j.apergo.2015.09.013

    Article  Google Scholar 

  35. Valente, A., Mazzolini, M., Carpanzano, E.: An approach to design and develop reconfigurable control software for highly automated production systems. Int. J. Comput. Integr. Manuf. 28(3), 321–336 (2015). https://doi.org/10.1080/0951192X.2014.880810

    Article  Google Scholar 

  36. Vaskevicius, N., Mueller, C.A., Bonilla, M., Tincani, V., Stoyanov, T., Fantoni, G., Pathak, K., Lilienthal, A., Bicchi, A., Birk, A.: Object recognition and localization for robust grasping with a dexterous gripper in the context of container unloading. IEEE International Conference on Automation Science and Engineering, pp. 1270–1277 (2014). https://doi.org/10.1109/CoASE.2014.6899490

  37. World Trade Organization: World Trade Statistical Review 2019. World Trade Organization, Geneva (2019). https://www.wto.org/english/res_e/statis_e/wts2019_e/wts19_toc_e.htm

  38. Wynright Corp: Robotic Container Unloader (RTU). Technical report, Arlington (2016). https://robotics.wynright.com

Download references

Acknowledgment

This work is funded by the German Federal Ministry of Transport and Digital Infrastructure (BMVI) as part of the research project 19H17016C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasper Wilhelm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wilhelm, J., Beinke, T., Freitag, M. (2020). Improving Human-Machine Interaction with a Digital Twin. In: Freitag, M., Haasis, HD., Kotzab, H., Pannek, J. (eds) Dynamics in Logistics. LDIC 2020. Lecture Notes in Logistics. Springer, Cham. https://doi.org/10.1007/978-3-030-44783-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44783-0_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44782-3

  • Online ISBN: 978-3-030-44783-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics