Skip to main content

The Female Athlete Triad

  • Chapter
  • First Online:
Mental Health in the Athlete

Abstract

The female athlete triad (Triad) is comprised of three interrelated conditions: low energy availability (with or without disordered eating), menstrual dysfunction, and low bone mineral density. These three conditions occur on a spectrum ranging from optimal health to the end-stage outcomes of eating disorders, amenorrhea, and osteoporosis. The Triad is very common in athletes across all sports, but it is particularly prevalent in sports which emphasize leanness. Sports medicine physicians should be comfortable screening for all three components of the Triad. The end-outcomes of the Triad have long-lasting and serious health ramifications, so prompt identification and early treatment is crucial. Treatment should involve a multi-disciplinary approach that focuses on optimizing all facets of the Triad. If disordered eating or an eating disorder is diagnosed, the treatment team should include care from a mental health professional. First-line treatment for the Triad should focus on increasing or restoring energy availability using nonpharmacologic approaches. Return-to-play decision making for patients with the Triad can be complex. Clinicians may refer to the 2014 Female Athlete Triad Coalition Consensus Statement on Treatment and Return to Play for a risk assessment tool, which can assist with clinical decision making. There is increasing research which demonstrates the existence of a parallel condition in male athletes, characterized by low energy availability, hypogonadotropic hypogonadism, and decreased bone mineral density. Prevention efforts are important and should focus on increasing awareness of the Triad and fostering a healthy approach to exercise and nutrition at home and at school.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP, et al. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 2007;39(10):1867–82.

    Article  PubMed  Google Scholar 

  2. De Souza MJ, Nattiv A, Joy E, Misra M, Williams NI, Mallinson RJ, et al. 2014 Female Athlete Triad coalition consensus statement on treatment and return to play of the female athlete triad: 1st international conference held in San Francisco, California, May 2012 and 2nd international conference held in Indianapolis, Indiana, May 2013. Br J Sports Med. 2014;48(4):289.

    Article  PubMed  Google Scholar 

  3. Yeager KK, Agostini R, Nattiv A, Drinkwater B. The female athlete triad: disordered eating, amenorrhea, osteoporosis. Med Sci Sports Exerc. 1993;25(7):775–7.

    Article  PubMed  CAS  Google Scholar 

  4. Otis CL, Drinkwater B, Johnson M, Loucks A, Wilmore J. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 1997;29(5):i–ix.

    Article  PubMed  CAS  Google Scholar 

  5. Mountjoy M, Sundgot-Borgen J, Burke L, Carter S, Constantini N, Lebrun C, et al. The IOC consensus statement: beyond the Female Athlete Triad--Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2014;48(7):491–7.

    Article  PubMed  Google Scholar 

  6. Tenforde AS, Barrack MT, Nattiv A, Fredericson M. Parallels with the female athlete triad in male athletes. Sports Med. 2016;46(2):171–82.

    Article  PubMed  Google Scholar 

  7. Fredericson M, Nattiv A. ACSM symposium – the male athlete triad: updates and parallels with the female athlete, ACSM 65th annual meeting proceedings, Abstract A-18. 2018: p. 6.

    Google Scholar 

  8. Mountjoy M, Sundgot-Borgen JK, Burke LM, Ackerman KE, Blauwet C, Constantini N, et al. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br J Sports Med. 2018;52(11):687–97.

    Article  PubMed  Google Scholar 

  9. Beals KA, Manore MM. Disorders of the female athlete triad among collegiate athletes. Int J Sport Nutr Exerc Metab. 2002;12(3):281–93.

    Article  PubMed  Google Scholar 

  10. Sundgot-Borgen J, Torstveit MK. Prevalence of eating disorders in elite athletes is higher than in the general population. Clin J Sport Med. 2004;14(1):25–32.

    Article  PubMed  Google Scholar 

  11. Reinking MF, Alexander LE. Prevalence of disordered-eating behaviors in undergraduate female collegiate athletes and nonathletes. J Athl Train. 2005;40(1):47–51.

    PubMed  PubMed Central  Google Scholar 

  12. Glazer JL. Eating disorders among male athletes. Curr Sports Med Rep. 2008;7(6):332–7.

    Article  PubMed  Google Scholar 

  13. Sundgot-Borgen J, Torstveit MK. Aspects of disordered eating continuum in elite high-intensity sports. Scand J Med Sci Sports. 2010;20(Suppl 2):112–21.

    Article  PubMed  Google Scholar 

  14. Dusek T. Influence of high intensity training on menstrual cycle disorders in athletes. Croat Med J. 2001;42(1):79–82.

    PubMed  CAS  Google Scholar 

  15. Abraham SF, Beumont PJ, Fraser IS, Llewellyn-Jones D. Body weight, exercise and menstrual status among ballet dancers in training. Br J Obstet Gynaecol. 1982;89(7):507–10.

    Article  PubMed  CAS  Google Scholar 

  16. Khan KM, Liu-Ambrose T, Sran MM, Ashe MC, Donaldson MG, Wark JD. New criteria for female athlete triad syndrome? As osteoporosis is rare, should osteopenia be among the criteria for defining the female athlete triad syndrome? Br J Sports Med. 2002;36(1):10–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Gibbs JC, Williams NI, De Souza MJ. Prevalence of individual and combined components of the female athlete triad. Med Sci Sports Exerc. 2013;45(5):985–96.

    Article  PubMed  Google Scholar 

  18. Thein-Nissenbaum JM, Rauh MJ, Carr KE, Loud KJ, McGuine TA. Associations between disordered eating, menstrual dysfunction, and musculoskeletal injury among high school athletes. J Orthop Sports Phys Ther. 2011;41(2):60–9.

    Article  PubMed  Google Scholar 

  19. Thiemann P, Legenbauer T, Vocks S, Platen P, Auyeung B, Herpertz S. Eating disorders and their putative risk factors among female German professional athletes. Eur Eat Disord Rev. 2015;23(4):269–76.

    Article  PubMed  Google Scholar 

  20. De Souza MJ, Koltun KJ, Etter CV, Southmayd EA. Current status of the female athlete triad: update and future directions. Curr Osteoporos Rep. 2017;15(6):577–87.

    Article  PubMed  Google Scholar 

  21. Brown KA, Dewoolkar AV, Baker N, Dodich C. The female athlete triad: special considerations for adolescent female athletes. Transl Pediatr. 2017;6(3):144–9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kim BY, Nattiv A. Health considerations in female runners. Phys Med Rehabil Clin N Am. 2016;27(1):151–78.

    Article  PubMed  Google Scholar 

  23. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Association; 2013.

    Book  Google Scholar 

  24. Joy E, Kussman A, Nattiv A. 2016 update on eating disorders in athletes: a comprehensive narrative review with a focus on clinical assessment and management. Br J Sports Med. 2016;50(3):154–62.

    Article  PubMed  Google Scholar 

  25. Ackerman KE, Holtzman B, Cooper KM, Flynn EF, Bruinvels G, Tenforde AS, et al. Low energy availability surrogates correlate with health and performance consequences of relative energy deficiency in sport. Br J Sports Med. 2018;53(10):bjsports-2017-098958.

    Google Scholar 

  26. Vanheest JL, Rodgers CD, Mahoney CE, De Souza MJ. Ovarian suppression impairs sport performance in junior elite female swimmers. Med Sci Sports Exerc. 2014;46(1):156–66.

    Article  PubMed  Google Scholar 

  27. Woods AL, Garvican-Lewis LA, Lundy B, Rice AJ, Thompson KG. New approaches to determine fatigue in elite athletes during intensified training: resting metabolic rate and pacing profile. PLoS One. 2017;12(3):e0173807.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Tornberg Å, Melin A, Koivula FM, Johansson A, Skouby S, Faber J, et al. Reduced neuromuscular performance in amenorrheic elite endurance athletes. Med Sci Sports Exerc. 2017;49(12):2478–85.

    Article  PubMed  Google Scholar 

  29. Petkus DL, Murray-Kolb LE, De Souza MJ. The unexplored crossroads of the female athlete triad and iron deficiency: a narrative review. Sports Med. 2017;47(9):1721–37.

    Article  PubMed  Google Scholar 

  30. Joy EA, Nattiv A. Clearance and return to play for the female athlete triad: clinical guidelines, clinical judgment, and evolving evidence. Curr Sports Med Rep. 2017;16(6):382–5.

    Article  PubMed  Google Scholar 

  31. Rauh MJ, Nichols JF, Barrack MT. Relationships among injury and disordered eating, menstrual dysfunction, and low bone mineral density in high school athletes: a prospective study. J Athl Train. 2010;45(3):243–52.

    Article  PubMed  PubMed Central  Google Scholar 

  32. De Souza MJ, Miller BE, Loucks AB, Luciano AA, Pescatello LS, Campbell CG, et al. High frequency of luteal phase deficiency and anovulation in recreational women runners: blunted elevation in follicle-stimulating hormone observed during luteal-follicular transition. J Clin Endocrinol Metab. 1998;83(12):4220–32.

    PubMed  Google Scholar 

  33. Goolsby MA, Boniquit N. Bone health in athletes. Sports Health. 2017;9(2):108–17.

    Article  PubMed  Google Scholar 

  34. Nattiv A, Kennedy G, Barrack MT, Abdelkerim A, Goolsby MA, Arends JC, et al. Correlation of MRI grading of bone stress injuries with clinical risk factors and return to play: a 5-year prospective study in collegiate track and field athletes. Am J Sports Med. 2013;41(8):1930–41.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Barrack MT, Gibbs JC, De Souza MJ, Williams NI, Nichols JF, Rauh MJ, et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: a prospective multisite study of exercising girls and women. Am J Sports Med. 2014;42(4):949–58.

    Article  PubMed  Google Scholar 

  36. Ackerman KE, Putman M, Guereca G, Taylor AP, Pierce L, Herzog DB, et al. Cortical microstructure and estimated bone strength in young amenorrheic athletes, eumenorrheic athletes and non-athletes. Bone. 2012;51(4):680–7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bernhardt DT, Roberts WO, American Academy of Family Physicians, American Academy of Pediatrics. PPE: preparticipation physical evaluation. Elk Grove Village: American Academy of Pediatrics; 2010.

    Google Scholar 

  38. American College of Gynecologists. Committee opinion 702: female athlete triad. Obstet Gynecol. 2017;129(6):e160–7.

    Article  Google Scholar 

  39. Tenforde AS, Carlson JL, Chang A, Sainani KL, Shultz R, Kim JH, et al. Association of the female athlete triad risk assessment stratification to the development of bone stress injuries in collegiate athletes. Am J Sports Med. 2017;45(2):302–10.

    Article  PubMed  Google Scholar 

  40. Kussman A, Fredericson M, Kraus E, Singh S, Deakins-Roche M, Miller E, Kim BY, Tenforde A, Barrack M, Sainani K, Nattiv A. The female athlete triad cumulative risk assessment score implemented at the preparticipation physical exam correlates with risk of bone stress injury in collegiate distance runners: a 4-year prospective study. Abstract published in Clin J Sport Med. 2018;28(2):247.

    Google Scholar 

  41. Cobb KL, Bachrach LK, Sowers M, Nieves J, Greendale GA, Kent KK, et al. The effect of oral contraceptives on bone mass and stress fractures in female runners. Med Sci Sports Exerc. 2007;39(9):1464–73.

    Article  PubMed  CAS  Google Scholar 

  42. Lappe J, Cullen D, Haynatzki G, Recker R, Ahlf R, Thompson K. Calcium and vitamin d supplementation decreases incidence of stress fractures in female navy recruits. J Bone Miner Res. 2008;23(5):741–9.

    Article  PubMed  CAS  Google Scholar 

  43. Nieves JW, Melsop K, Curtis M, Kelsey JL, Bachrach LK, Greendale G, et al. Nutritional factors that influence change in bone density and stress fracture risk among young female cross-country runners. PM R. 2010;2(8):740–50; quiz 94.

    Article  PubMed  Google Scholar 

  44. Kelsey JL, Bachrach LK, Procter-Gray E, Nieves J, Greendale GA, Sowers M, et al. Risk factors for stress fracture among young female cross-country runners. Med Sci Sports Exerc. 2007;39(9):1457–63.

    Article  PubMed  Google Scholar 

  45. Institute of Medicine. Dietary reference intakes for calcium and vitamin D. Washington DC: National Academies Press; 2011. 1132 p.

    Google Scholar 

  46. Bolland MJ, Avenell A, Baron JA, Grey A, MacLennan GS, Gamble GD, Reid IR. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ. 2010;341:c3691.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Curhan GC, Willett WC, Speizer FE, Spiegelman D, Stampfer MJ. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann Intern Med. 1997;126(7):497–504.

    Article  PubMed  CAS  Google Scholar 

  48. Maroon JC, Mathyssek CM, Bost JW, Amos A, Winkelman R, Yates AP, et al. Vitamin D profile in National Football League players. Am J Sports Med. 2015;43(5):1241–5.

    Article  PubMed  Google Scholar 

  49. Kim BY, Kraus E, Fredericson M, Tenforde A, Singh S, Kussman A, Barrack M, Deakins-Roche M, Nattiv A. Serum vitamin D levels are inversely associated with time lost to bone stress injury in a cohort of NCAA Division I distance runners. Abstract published in Clin J Sport Med. 2016;26(2):e58–68.

    Article  Google Scholar 

  50. Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA. 2010;303(18):1815–22.

    Article  CAS  PubMed  Google Scholar 

  51. Fredericson M, Ngo J, Cobb K. Effects of ball sports on future risk of stress fracture in runners. Clin J Sport Med. 2005;15(3):136–41.

    Article  PubMed  Google Scholar 

  52. Torstveit MK, Sundgot-Borgen J. Low bone mineral density is two to three times more prevalent in non-athletic premenopausal women than in elite athletes: a comprehensive controlled study. Br J Sports Med. 2005;39(5):282–7; discussion -7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Arends JC, Cheung MY, Barrack MT, Nattiv A. Restoration of menses with nonpharmacologic therapy in college athletes with menstrual disturbances: a 5-year retrospective study. Int J Sport Nutr Exerc Metab. 2012;22(2):98–108.

    Article  PubMed  CAS  Google Scholar 

  54. Cialdella-Kam L, Guebels CP, Maddalozzo GF, Manore MM. Dietary intervention restored menses in female athletes with exercise-associated menstrual dysfunction with limited impact on bone and muscle health. Nutrients. 2014;6(8):3018–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Jonnavithula S, Warren MP, Fox RP, Lazaro MI. Bone density is compromised in amenorrheic women despite return of menses: a 2-year study. Obstet Gynecol. 1993;81(5 (Pt 1)):669–74.

    PubMed  CAS  Google Scholar 

  56. Keen AD, Drinkwater BL. Irreversible bone loss in former amenorrheic athletes. Osteoporos Int. 1997;7(4):311–5.

    Article  PubMed  CAS  Google Scholar 

  57. Rosendahl J, Bormann B, Aschenbrenner K, Aschenbrenner F, Strauss B. Dieting and disordered eating in German high school athletes and non-athletes. Scand J Med Sci Sports. 2009;19(5):731–9.

    Article  PubMed  CAS  Google Scholar 

  58. Thiel A, Gottfried H, Hesse FW. Subclinical eating disorders in male athletes. A study of the low weight category in rowers and wrestlers. Acta Psychiatr Scand. 1993;88(4):259–65.

    Article  PubMed  CAS  Google Scholar 

  59. Chatterton JM, Petrie TA. Prevalence of disordered eating and pathogenic weight control behaviors among male collegiate athletes. Eat Disord. 2013;21(4):328–41.

    Article  PubMed  Google Scholar 

  60. Steen SN, Brownell KD. Patterns of weight loss and regain in wrestlers: has the tradition changed? Med Sci Sports Exerc. 1990;22(6):762–8.

    Article  PubMed  CAS  Google Scholar 

  61. Riebl SK, Subudhi AW, Broker JP, Schenck K, Berning JR. The prevalence of subclinical eating disorders among male cyclists. J Am Diet Assoc. 2007;107(7):1214–7.

    Article  PubMed  Google Scholar 

  62. Fagerberg P. Negative consequences of low energy availability in natural male bodybuilding: a review. Int J Sport Nutr Exerc Metab. 2018;28(4):385–402.

    Article  PubMed  CAS  Google Scholar 

  63. Koehler K, Hoerner NR, Gibbs JC, Zinner C, Braun H, De Souza MJ, et al. Low energy availability in exercising men is associated with reduced leptin and insulin but not with changes in other metabolic hormones. J Sports Sci. 2016;34(20):1921–9.

    Article  PubMed  Google Scholar 

  64. Heikura IA, Uusitalo ALT, Stellingwerff T, Bergland D, Mero AA, Burke LM. Low energy availability is difficult to assess but outcomes have large impact on bone injury rates in elite distance athletes. Int J Sport Nutr Exerc Metab. 2018;28(4):403–11.

    Article  PubMed  CAS  Google Scholar 

  65. Barrack MT, Fredericson M, Tenforde AS, Nattiv A. Evidence of a cumulative effect for risk factors predicting low bone mass among male adolescent athletes. Br J Sports Med. 2017;51(3):200–5.

    Article  PubMed  Google Scholar 

  66. Blauwet CA, Brook EM, Tenforde AS, Broad E, Hu CH, Abdu-Glass E, et al. Low energy availability, menstrual dysfunction, and low bone mineral density in individuals with a disability: implications for the para athlete population. Sports Med. 2017;47(9):1697–708.

    Article  PubMed  Google Scholar 

  67. Kroshus E, Fischer AN, Nichols JF. Assessing the awareness and behaviors of U.S. High School nurses with respect to the female athlete triad. J Sch Nurs. 2015;31(4):272–9.

    Article  PubMed  Google Scholar 

  68. Curry EJ, Logan C, Ackerman K, McInnis KC, Matzkin EG. Female athlete triad awareness among multispecialty physicians. Sports Med Open. 2015;1(1):38.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Brown KN, Wengreen HJ, Beals KA. Knowledge of the female athlete triad, and prevalence of triad risk factors among female high school athletes and their coaches. J Pediatr Adolesc Gynecol. 2014;27(5):278–82.

    Article  PubMed  Google Scholar 

  70. Pantano KJ. Current knowledge, perceptions, and interventions used by collegiate coaches in the U.S. regarding the prevention and treatment of the female athlete triad. N Am J Sports Phys Ther. 2006;1(4):195–207.

    PubMed  PubMed Central  Google Scholar 

  71. Miller SM, Kukuljan S, Turner AI, van der Pligt P, Ducher G. Energy deficiency, menstrual disturbances, and low bone mass: what do exercising Australian women know about the female athlete triad? Int J Sport Nutr Exerc Metab. 2012;22(2):131–8.

    Article  PubMed  Google Scholar 

  72. Kroshus E, DeFreese JD, Kerr ZY. Collegiate athletic trainers’ knowledge of the female athlete triad and relative energy deficiency in sport. J Athl Train. 2018;53(1):51–9.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Becker CB, McDaniel L, Bull S, Powell M, McIntyre K. Can we reduce eating disorder risk factors in female college athletes? A randomized exploratory investigation of two peer-led interventions. Body Image. 2012;9(1):31–42.

    Article  PubMed  Google Scholar 

  74. Elliot DL, Goldberg L, Moe EL, Defrancesco CA, Durham MB, McGinnis W, et al. Long-term outcomes of the ATHENA (Athletes Targeting Healthy Exercise & Nutrition Alternatives) program for female high school athletes. J Alcohol Drug Educ. 2008;52(2):73–92.

    PubMed  PubMed Central  Google Scholar 

  75. Stice E, Rohde P, Shaw H, Gau JM. Clinician-led, peer-led, and internet-delivered dissonance-based eating disorder prevention programs: acute effectiveness of these delivery modalities. J Consult Clin Psychol. 2017;85(9):883–95.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kussman, A., Nattiv, A. (2020). The Female Athlete Triad. In: Hong, E., Rao, A. (eds) Mental Health in the Athlete. Springer, Cham. https://doi.org/10.1007/978-3-030-44754-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44754-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44753-3

  • Online ISBN: 978-3-030-44754-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics