Skip to main content

Unipolar Arcs. Experimental and Theoretical Study

  • Chapter
  • First Online:
Plasma and Spot Phenomena in Electrical Arcs

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 113))

  • 660 Accesses

Abstract

Igor Tamm and Andrei Sakharov in 1950 are the first physicists who proposed an idea to use toroidal camera for high-temperature plasma confinement named then as Tokamak. The first tokamak, the T-1, began operation in 1958. Also in 1958, the model of the Harwell controlled Zero Energy Thermonuclear Assembly (ZETA) was demonstrated in London. High-temperature plasma exposes a high heat load the facing a divertor material and first wall in fusion reactors. Different materials were used for tokamak construction. One of these materials, tungsten, was used as a metal with high durability against the high heat load and low sputtering yield. When the sprayed tungsten was exposed to the helium plasma, the surface was covered with arborescent nanostructured tungsten containing many helium bubbles inside the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arcing phenomena in fusion devises. In Proceedings of Workshop, Langley (Ed.), US Department of Energy, Knoxville, Tennessee, April 5–6 (1979).

    Google Scholar 

  2. Robson, A. E., & Hancox, R. (1959). Choice of materials and problems of design of heavy-current toroidal discharge tubes. Proceedings of the IEE—Part A: Power Engineering, 106(2S), 47–55.

    Article  Google Scholar 

  3. Craston, J. L., Hancox, R., Robson, A. E., Kaufmann, S., Miles, A. T., Ware, A. A., & Wesson, J. A. (1958, September). The role of materials m controlled thermonuclear research (F,S). In Proceedings of the Second United Nations International Conference on the peaceful uses of atomic energy, Geneva, P/34 (Vol. 32, p. 414).

    Google Scholar 

  4. Pfeil, P. C. L., & Griffiths, L. R. (1959). The effect of inclusions on the arcing behaviour of metals. Journal of Nuclear Materials, 1(3), 244–248.

    Article  ADS  Google Scholar 

  5. Hancox, R. (1960). Importance of insulating inclusions in arc initiation. British Journal of Applied Physics, 11(10), 468–471.

    Article  ADS  Google Scholar 

  6. Maskrey, J. T., & Dugdale, R. A. (1962). Arc initiation on heated molybdenum exposed to a toroidal hydrogen discharge contaminated with impurity gases. Journal of Nuclear Materials, 7(2), 197–204.

    Article  ADS  Google Scholar 

  7. Maskrey, J. T., & Dugdale, R. A. (1963). The importance of contamination in arc initiation on stainless steel exposed to a toroidal discharge. Journal of Nuclear Materials, 10(3), 233–242.

    Article  ADS  Google Scholar 

  8. Panayotou, N. F., Tien, J. K., & Gross, R. A. (1976). Damage of a candidate CTR material in a high energy fluence deuterium plasma. Journal of Nuclear Materials, 63, 137–150.

    Article  ADS  Google Scholar 

  9. Miley, G. H. (1976). Surface effects related to voltage breakdown in CTR devices. Journal of Nuclear Materials, 63, 331–336.

    Article  ADS  Google Scholar 

  10. McCracken, G. M., Dearnaley, G., Gill, R. D., Hugill, J., Paul, J. W. M., Powell, B. A., et al. (1978). Time resolved metal impurity concentrations in the dite tokamak using RBS analysis. Journal of Nuclear Materials, 76(77), 431–436.

    Article  ADS  Google Scholar 

  11. Goodall, D. H. J., Conlon, T. W., Sofield, C., & McCracken, G. M. (1978). Investigations of arcing in the DITE tokamak. Journal of Nuclear Materials, 76(77), 492–498.

    Article  ADS  Google Scholar 

  12. McCracken, G. M., & Goodall, D. H. J. (1978). The role of arcing in producing metal impurities in tokamaks. Nuclear Fusion, 18(4), 537–543.

    Article  ADS  Google Scholar 

  13. McCracken, G. M. (1980). A review of the experimental evidence for arcing and sputtering in tokamaks. Journal of Nuclear Materials, 93–94, Part 1, 3–16.

    Google Scholar 

  14. Mioduszewski, P., Clausing, R. E., & Heatherly, L. (1979). Observations of arcing in the ISX tokamak. Journal of Nuclear Materials, 85(86), 963–966.

    Article  ADS  Google Scholar 

  15. Wu, T., Nouailletas, R., & Lefèvre, L. P. (2016). Plasma q-profile control in tokamaks using a damping assignment passivity based approach. Control Engineering Practice, 54, 34–45.

    Article  Google Scholar 

  16. Goodall, D. H. J. (1980). Arcing studies in the DITE tokamak using a time resolved arc detector. Journal of Nuclear Materials, 93–94, 154–160.

    Article  ADS  Google Scholar 

  17. Zykova, N. M., Beilis, I. I., & Kurakina, T. C., Private communication.

    Google Scholar 

  18. Zykova, N. M., Nedospasov, A. V., & Petrov, V. G. (1983). Unipolar arcs. Teplofiz. Vysokikh Temp., 21(4), 778–787.

    Google Scholar 

  19. Bogomolov, L. M., Zykova, N. M., & Kabanov, V. N. (1983). Electric arc discharge in the Tokamak TV-1. Journal of Nuclear Materials, 162–164, 443–447.

    Google Scholar 

  20. Nedospasov, A. V., Petrov, V. G., & Zykova, N. M. (1985). Unipolar arcs. IEEE Transactions on Plasma Science, PS-13 N5, 253–256.

    Google Scholar 

  21. Stampa, A., & Kruger, H. (1983). Simulation experiments on unipolar arcs. Journal of Physics. D. Applied Physics, 16, 2135–2144.

    Article  ADS  Google Scholar 

  22. Herrmann, A., Balden, M., Laux, M., Krieger, K., Müller, H. W., Pugno, R., et al. (2009). Arcing in ASDEX Upgrade with a tungsten first wall. Journal of Nuclear Materials, 390–391, 747–750.

    Article  ADS  Google Scholar 

  23. Rohde, V., Endstrasser, N., Toussaint, U. V., Balden, M., Lunt, T., Neu, R., et al. (2011). Tungsten erosion by arcs in ASDEX upgrade. Journal of Nuclear Materials, 415, S46–S50.

    Article  Google Scholar 

  24. Doerner, R. P., Baldwin, M. J., & Stangeby, P. C. (2011). An equilibrium model for tungsten fuzz in an eroding plasma environment. Nuclear Fusion, 51, 043001.

    Article  ADS  Google Scholar 

  25. Kajita, S., Takamura, S., Ohno, N., Nishijima, D., Iwakiri, H., & Yoshida, N. (2007). Sub-ms laser pulse irradiation on tungsten target damaged by exposure to helium plasma. Nuclear Fusion, 47(9), 1358–1366.

    Article  ADS  Google Scholar 

  26. Sakaguchi, W., Kajita, S., Ohno, N., & Takagi, M. (2009). In situ reflectivity of tungsten mirrors under helium plasma exposure. Journal of Nuclear Materials, 390–391, 1149–1152.

    Google Scholar 

  27. Kajita, S., Yoshida, N., Yoshihara, R., Ohno, N., & Yamagiwa, M. (2011). TEM observation of the growth process of helium nanobubbles on tungsten: Nanostructure formation mechanism. Journal of Nuclear Materials, 418, 152–158.

    Article  ADS  Google Scholar 

  28. Behrisch, R. (1979). Surface erosion from plasma materials interaction. Journal of Nuclear Materials, 85–86, 1047–1061.

    Article  ADS  Google Scholar 

  29. Ye, M. Y., Ohno, N., & Takamura, S. (1997). Study of hot tungsten emissive plate in high heat flux plasma on NAGDIS-I. Journal of Nuclear Materials, 241–243, 12431247.

    Google Scholar 

  30. Yang, Q., You, Y.-W., Liu, L., Fan, H., Ni, W., Liu, D. et al. (2015). Nanostructured fuzz growth on tungsten under low-energy and high-flux He irradiation-Scientific Reports. Five, N10959.

    Google Scholar 

  31. Kajita, S., Takakura, S., & Ohio, N. (2009). Prompt ignition of a unipolar arc on helium irradiated tungsten. Nuclear Fusion, 49(N3), 032002.

    Google Scholar 

  32. Kajita, S., Takamura, S., & Ohno, N. (2011). Motion of unipolar arc spots ignited on a nanostructured tungsten surface. Plasma Physics and Controlled Fusion, 53, 074002.

    Article  ADS  Google Scholar 

  33. Kajita, S., Ohno, N., Yoshida, N., Yoshihara, R., & Takamura, S. (2012). Arcing on tungsten subjected to helium and transients: ignition conditions and erosion rates. Plasma Physics and Controlled Fusion, 54, 035009.

    Article  ADS  Google Scholar 

  34. Kajita, S., Ohno, N., Takamura, S., & Yo, T. (2009). Direct observation of cathode spot grouping using nanostructured electrode. Physics Letters, A 373, 4273–4277.

    Google Scholar 

  35. Hwangbo, D., Kajita, S., Barengolts, S. A., Tsventoukh, M. M., & Ohno, N. (2014). Transition in velocity and grouping of arc spot on different nanostructured tungsten electrodes. Results in Physics, 4, 33–39.

    Article  ADS  Google Scholar 

  36. Beilis, I. I., & Lyubimov, G. A. (1976). Theory of the arc spot on a film cathode. Soviet Physics—Technical Physics, 21(6), 698–703.

    Google Scholar 

  37. Kajita, S. (2018). Ignition and behavior of arc spots under fusion relevant condition. In Proceedings of 28th International Symposium on Discharges and Electrical Insulation in Vacuum, Germany, Greifswald, September (pp. 1–6).

    Google Scholar 

  38. Laux, M., Schneider, W., Juttner, B., Linding, S., Mayer, M., Balden, M., et al. (2004). Modification of tungsten layers by arcing. PSI (Plasma Surface Interaction)-16, Germany, P3–28.

    Google Scholar 

  39. Laux, M., Schneider, W., Juttner, B., Balden, M., Linding, S., Beilis, I. I., & Jakov, B. (2005). Ignition and burning of vacuum arcs on tungsten layer. IEEE Transactions on Plasma Science, 33(N5), 1470–1475.

    Google Scholar 

  40. Laux, M., Schneider, W., Jüttner, B., Lindig, S., Mayer, M., Balden, M., et al. (2005). Modification of tungsten layers by arcing. Journal of Nuclear Materials, 337–339, 1019–1023.

    Article  ADS  Google Scholar 

  41. Robson, A. E., & Thonemann, P. C. (1959). An Arc maintained on an Isolated Metal Plate exposed to a Plasma. Proceedings of the Physical Society, 73(3), 508–512.

    Article  ADS  Google Scholar 

  42. Wieckert, C. (1978). Plasma induced arcs. Journal of Nuclear Materials, 76(77), 499–503.

    Article  ADS  Google Scholar 

  43. Ecker, G. (1971). Zur theorie des vakuumbogens. Beitrage aus der Plasmaphysik, 11(5), 405–415.

    Article  Google Scholar 

  44. Ecker, G. (1976). The vacuum arc cathode. A phenomenon of many aspects. IEEE Transactions on Plasma Science, PS-4(N4), 218–227.

    Google Scholar 

  45. Hantzsche, E. (1980). Unipolarbogen. Beitrage Plasmaphysics, 20(5), 329–342.

    Article  ADS  Google Scholar 

  46. Hantzsche, E. (1988). Currents in intersected tokamak flux tubes. Contributions to Plasma Physics, 28(4–5), 411–416.

    Article  ADS  Google Scholar 

  47. Schwirzke, F., & Taylor, R. J. (1980). Surface damage by sheath effects and unipolar arcs. Journal of Nuclear Materials, 93–94, Part 2, 780–784.

    Google Scholar 

  48. Schwirzke, F. (1984). Unipolar arc model. Journal of Nuclear Materials, 128 &129, 609–612.

    Google Scholar 

  49. Schwirzke, F., Hallal, M. P., Jr., & Maruyama, X. K. (1993). Onset of breakdown and formation of cathode spots. IEEE Transactions on Plasma Science, 21(5), 410–415.

    Article  ADS  Google Scholar 

  50. Beilis, I. I., & Lyubimov, G. A. (1976). Signature” determination of current density at the cathode spot in an arc. Soviet Physics—Technical Physics, 21, 1280–1282.

    Google Scholar 

  51. Hothker, K., Bieger, W., Hartwig, H., Hintz, E., & Koizlik, K. (1980). Plasma-induced arcs in an RE-discharge. Journal of Nuclear Materials, 93 & 94, 785–790.

    Google Scholar 

  52. Reece, M. P. (1963). The vacuum switch. Proceedings of IEE, 110, 793–811.

    Google Scholar 

  53. Kesaev, I. G. (1964). Laws governing the cathode drop and threshold currents in an arc discharge on pure metals. Soviet Physics. Technical Physics, 9, 1146–1154.

    Google Scholar 

  54. Nedospasov, A. V., & Petrov, V. G. (1978). Model of the unipolar arc on a tokamak wall. Journal of Nuclear Materials, 76 & 77, 490–491.

    Google Scholar 

  55. Nedospasov, A. V., & Petrov, V. G. (1980). Unipolar arcs as impurity source in Tokamaks. Journal of Nuclear Materials, 93 & 94, 775–779.

    Google Scholar 

  56. Petrov, V. G. (1982). Gometry of current close in an unipolar arc considering plasma energy balance. High Temperature, 20(2), 220–224.

    Google Scholar 

  57. Lafferty, M. (1966). Triggered vacuum gaps. Proceedings of the IEEE, 54(1), 23–32.

    Article  Google Scholar 

  58. Nedospasov, A. V., & Petrov, V. G. (1983). Thermal contraction during heat exchange between a hot plasma and metal surface. Soviet Physics. Doklady, 28(N3), 293–295.

    Google Scholar 

  59. Tokar, M. Z. (1988). Tokamak edge plasma transition to the state with detachment from limiter. Contributions Plasma Physics, 28(4–5), 355–358.

    Article  ADS  Google Scholar 

  60. Tokar, M. Z., Nedospasov, A. V., & Yarochkin, A. V. (1992). Nuclear Fusion, 32(1), 15–23.

    Article  ADS  Google Scholar 

  61. Rozhansky, V., Kaveeva, E., Senichenkov, I., & Vekshina, E. (2018). Structure of the classical scrape-off layer (SOL) of a tokamak. Plasma Physics. Control Fusion, 60(N3), 035001.

    Google Scholar 

  62. Philips, V., Summ, U., Tokar, M. Z., Unterberg, B., Pospieszczyk, A., & Schweer, B. (1993). Evidence of hot spot formation on carbon limiters due to thermal electron emission. Nuclear Fusion, 33(6), 953–961.

    Article  ADS  Google Scholar 

  63. Igitkhanov, Yu L. (1988). Calculation nonequilibrium distribution function ions. Contributions Plasma Physics, 28(4–5), 333–339.

    Article  ADS  Google Scholar 

  64. Igitkhanov, Yu L. (1988). On the mechanism of stationary burn of unipolar micro arcs in the Scrape-Off tokamak plasma. Contributions Plasma Physics, 28(4–5), 421–425.

    Article  ADS  Google Scholar 

  65. Igitkhanov, Yu L, & Bazylev, B. (2011). Electric field and hot spots formation on divertor plates. Journal of Modern Physics Open A, 2(3), 131–135.

    Google Scholar 

  66. Granovski, V. (1971). The electric current in a gases. Moscow: Nauka. (in Russian).

    Google Scholar 

  67. Bazylev, B., Janeschitz, G., Landman, I., & Pestchanyi, S. (2005). Erosion of tungsten armor after multiple intense transient events in ITER. Journal of Nuclear Materials, 337–339, 766–770.

    Article  ADS  Google Scholar 

  68. Chodura, R. (1988). Basic problems in edge plasma modelling. Contributions Plasma Physics, 28(4–5), 303–312.

    Article  ADS  Google Scholar 

  69. Gielen, H. J. G., & Schram, D. C. (1990). Unipolar arc model. IEEE Transactions on Plasma Science, 18(1), 127–133.

    Article  ADS  Google Scholar 

  70. Rozhanskij, V. A., Ushakov, A. A., & Voskobojnikov, S. P. (1996). Electric field near an emitting surface and unipolar arc formation. Nuclear Fusion, 36(2), 191–198.

    Article  ADS  Google Scholar 

  71. Mesyats, G. A. (1984). Microexplosion on a cathode aroused by plasma-metal interaction. Journal of Nuclear Materials, 128&129, 618–621.

    Article  Google Scholar 

  72. Barengolts, S. A., Mesyats, G. A., & Tsventoukh, M. M. (2008). Initiation of ecton processes by interaction of a plasma with a microprotrusion on a metal surface. Soviet. Physics JETP, 107(6), 1039–1048.

    Article  ADS  Google Scholar 

  73. Uimanov, I. V. (2003). A two-dimensional nonstationary model of the initiation of an explosive center beneath the plasma of a vacuum arc cathode spot. IEEE Transactions on Plasma Science, 31(5), 822–826.

    Article  ADS  Google Scholar 

  74. Barengolts, S. A., Mesyats, G. A., & Tsventoukh, M. M. (2010). The ecton mechanism of unipolar arcing in magnetic confinement fusion devices. Nuclear Fusion, 50, 125004.

    Article  ADS  Google Scholar 

  75. Barengolts, S. A., Mesyats, G. A., & Tsventoukh, M. M. (2011). Explosive electron emission ignition at the “W-Fuzz” surface under plasma Power Load. IEEE Transactions on Plasma Science, 39(9), 1900–1904.

    Article  ADS  Google Scholar 

  76. Kesaev, I. G. (1964). Cathode processes in the mercury arc. NY: Consultants Bureau.

    Book  Google Scholar 

  77. Levchenko, I. G., Voloshko, A. U., Keidar, M., & Beilis, I. I. (2003). Unipolar arc behavior in high frequency fields. IEEE Transactions on Plasma Science, 31(1), 137–141.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isak Beilis .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beilis, I. (2020). Unipolar Arcs. Experimental and Theoretical Study. In: Plasma and Spot Phenomena in Electrical Arcs. Springer Series on Atomic, Optical, and Plasma Physics, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-030-44747-2_21

Download citation

Publish with us

Policies and ethics