Skip to main content

Computational Singular Perturbation Method and Tangential Stretching Rate Analysis of Large Scale Simulations of Reactive Flows: Feature Tracking, Time Scale Characterization, and Cause/Effect Identification. Part 2, Analyses of Ignition Systems, Laminar and Turbulent Flames

Abstract

Chapter 3 summarized the highlights of the concepts behind the CSP method and the TSR analysis. In this chapter, we will discuss a few applications of these techniques.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-44718-2_4
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-44718-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9
Fig. 4.10
Fig. 4.11
Fig. 4.12

Reprinted from [45], Copyright (2019), with permission from Elsevier

Fig. 4.13

Reprinted from [45], Copyright (2019), with permission from Elsevier

Fig. 4.14

Reprinted from [45], Copyright (2019), with permission from Elsevier

Fig. 4.15

Reprinted from [51], Copyright (2019), with permission from Elsevier

Fig. 4.16

Reprinted from [51], Copyright (2019), with permission from Elsevier

Fig. 4.17

Reprinted from [51], Copyright (2019), with permission from Elsevier

Fig. 4.18

Reprinted from [51], Copyright (2019), with permission from Elsevier

Fig. 4.19
Fig. 4.20

References

  1. M. Valorani, D.A. Goussis, J. Comput. Phys. 169, 44 (2001)

    MathSciNet  CrossRef  Google Scholar 

  2. M. Valorani, P. Ciottoli, R. Malpica Galassi, S. Paolucci, T. Grenga, E. Martelli, Flow Turbul. Combust. 101(4), 1023 (2018)

    Google Scholar 

  3. M. Valorani, S. Paolucci, J. Comput. Phys. 228, 4665 (2009)

    MathSciNet  CrossRef  Google Scholar 

  4. H.N. Najm, M. Valorani, J. Comput. Phys. 270, 544 (2014)

    MathSciNet  CrossRef  Google Scholar 

  5. L. Wang, X. Han, Y. Cao, H.N. Najm, J. Comput. Phys. 335, 404 (2017)

    MathSciNet  CrossRef  Google Scholar 

  6. X. Han, M. Valorani, H.N. Najm, J. Chem. Phys. 150(19), 194101 (2019)

    CrossRef  Google Scholar 

  7. M. Valorani, F. Creta, D.A. Goussis, J.C. Lee, H.N. Najm, in Computational Fluid and Solid Mechanics 2005, ed. by K. Bathe (Elsevier Science, 2005), pp. 900–904

    Google Scholar 

  8. R.M. Galassi, P.P. Ciottoli, S.M. Sarathy, H.G. Im, S. Paolucci, M. Valorani, Combust. Flame 197, 439 (2018)

    CrossRef  Google Scholar 

  9. A. Massias, D. Diamantis, E. Mastorakos, D. Goussis, Combust. Flame 117(6), 685–708 (1999)

    CrossRef  Google Scholar 

  10. A. Massias, D. Diamantis, E. Mastorakos, D. Goussis, Combust. Theory Model. 3(6), 233–257 (1999)

    CrossRef  Google Scholar 

  11. E.A. Tingas, D.J. Diamantis, D.A. Goussis, Combust. Theory Model. 22(6), 1049 (2018)

    MathSciNet  CrossRef  Google Scholar 

  12. D.A. Goussis, H.N. Najm, Multiscale Model. Simul. 5(4), 1297 (2006)

    MathSciNet  CrossRef  Google Scholar 

  13. D.G. Patsatzis, D.A. Goussis, Math. Biosci. 315, 108220 (2019)

    MathSciNet  CrossRef  Google Scholar 

  14. D.A. Michalaki, I. Lida Goussis, J. Math. Biol. 77(3), 821 (2018)

    MathSciNet  MATH  CrossRef  Google Scholar 

  15. M. Valorani, P. Ciottoli, R. Malpica Galassi, CSPTk - A software toolkit for the CSP and TSR analysis of kinetic models and the simplification and reduction of chemical kinetics mechanisms. The software can be obtained upon request to M.Valorani (mauro.valorani@uniroma1.it) (2015)

    Google Scholar 

  16. E.A. Tingas, D.C. Kyritsis, D.A. Goussis, Combust. Flame 162(9), 3263 (2015)

    CrossRef  Google Scholar 

  17. E.A. Tingas, H.G. Im, D.C. Kyritsis, D.A. Goussis, Fuel 211, 898 (2018)

    CrossRef  Google Scholar 

  18. E.A. Tingas, D.C. Kyritsis, D.A. Goussis, Fuel 183, 90 (2016)

    CrossRef  Google Scholar 

  19. E.A. Tingas, D.C. Kyritsis, D.A. Goussis, Combust. Theory Model. 21(1), 93 (2017)

    MathSciNet  CrossRef  Google Scholar 

  20. D.M. Manias, E.A. Tingas, C.E. Frouzakis, K. Boulouchos, D.A. Goussis, Combust. Flame 164, 111 (2016)

    CrossRef  Google Scholar 

  21. D.J. Diamantis, E. Mastorakos, D.A. Goussis, Combust. Theory Model. 19(3), 382 (2015)

    MathSciNet  CrossRef  Google Scholar 

  22. A. Kazakov, M. Chaos, Z. Zhao, F.L. Dryer, J. Phys. Chem. A 110(21), 7003 (2006)

    CrossRef  Google Scholar 

  23. E.A. Tingas, D.C. Kyritsis, D.A. Goussis, J. Energ. Eng. 145(1), 04018074 (2018)

    CrossRef  Google Scholar 

  24. Y. Li, A. Alfazazi, B. Mohan, E.A. Tingas, J. Badra, H.G. Im, S.M. Sarathy, Fuel 247, 164 (2019)

    CrossRef  Google Scholar 

  25. W. Song, E.A. Tingas, H.G. Im, Combust. Flame 195, 84 (2018)

    CrossRef  Google Scholar 

  26. E.A. Tingas, D.C. Kyritsis, D.A. Goussis, Fuel 169, 15 (2016)

    CrossRef  Google Scholar 

  27. E.A. Tingas, D.M. Manias, S.M. Sarathy, D.A. Goussis, Fuel 223, 74 (2018)

    CrossRef  Google Scholar 

  28. E.A. Tingas, Z. Wang, S.M. Sarathy, H.G. Im, D.A. Goussis, Combust. Flame 188, 28 (2018)

    CrossRef  Google Scholar 

  29. S.M. Sarathy, E.A. Tingas, E.F. Nasir, A. Detogni, Z. Wang, A. Farooq, H. Im, Proc (Combust, Inst, 2018)

    Google Scholar 

  30. A.L. Sánchez, F.A. Williams, Prog. Energy Combust. Sci. 41, 1 (2014)

    CrossRef  Google Scholar 

  31. K. Zhang, C. Banyon, J. Bugler, H.J. Curran, A. Rodriguez, O. Herbinet, F. Battin-Leclerc, C. B’Chir, K.A. Heufer, Combustion and Flame 172, 116 (2016)

    CrossRef  Google Scholar 

  32. N. Peters, Turbulent Combustion (Cambridge University Press, UK, Cambridge, UK, 2000)

    MATH  CrossRef  Google Scholar 

  33. C. Safta, H.N. Najm, O. Knio, Sandia Report SAND2011-3282 (2011). http://www.sandia.gov/tchem

  34. J. Li, Z. Zhao, A. Kazakov, M. Chaos, F.L. Dryer, J.J.J. Scire, International Journal of Chemical Kinetics 39, 109 (2007)

    CrossRef  Google Scholar 

  35. P. Pal, M. Valorani, P.G. Arias, H.G. Im, M.S. Wooldridge, P.P. Ciottoli, R. Malpica Galassi, Proc. Combust. Inst. 36(3), 3705 (2017)

    Google Scholar 

  36. P. Pal, A.B. Mansfield, M.S. Wooldridge, H.G. Im, Combustion Theory and Modelling 66(5), 1 (2015)

    Google Scholar 

  37. M. Valorani, P.P. Ciottoli, R.M. Galassi, Proc. Combust. Inst. 36(1), 1357 (2017)

    CrossRef  Google Scholar 

  38. C. Trevino, Progress in Astronautics and Aeronautics. AIAA 131, 19 (1991)

    Google Scholar 

  39. P. Boivin, C. Jimenez, A.L. Sànchez, F.A. Williams, Proceedings of the Combustion Institute 33(1), 517 (2011)

    CrossRef  Google Scholar 

  40. P. Boivin, A.L. Sànchez, F.A. Williams, Combustion and Flame 159(2), 748 (2012)

    CrossRef  Google Scholar 

  41. A. Cavaliere, M. de Joannon, Progress in Energy and Combustion science 30(4), 329 (2004)

    CrossRef  Google Scholar 

  42. H.G. Im, in Modeling and Simulation of Turbulent Combustion (Springer, 2018), pp. 99–132

    Google Scholar 

  43. H.G. Im, P.G. Arias, S. Chaudhuri, H.A. Uranakara, Combustion Science and Technology 188(8), 1182 (2016)

    CrossRef  Google Scholar 

  44. P. Arias, H. Uranakar, S. Chaudhuri, H. Im, in APS Meeting Abstracts (2015)

    Google Scholar 

  45. D.M. Manias, E.A. Tingas, F.E.H. Pérez, R.M. Galassi, P.P. Ciottoli, M. Valorani, H.G. Im, Combust. Flame 200, 155 (2019)

    CrossRef  Google Scholar 

  46. J.A. Wünning, J.G. Wünning, Progress in Energy and Combustion Science 23, 81 (1997)

    CrossRef  Google Scholar 

  47. A. Cavaliere, M. de Joannon, Progress in Energy and Combustion Science 30, 329 (2004)

    CrossRef  Google Scholar 

  48. B.B. Dally, E. Riesmeier, N. Peters, Combustion and Flame 137, 418 (2004)

    CrossRef  Google Scholar 

  49. M. de Joannon, G. Sorrentino, A. Cavaliere, Combustion and Flame 159, 1832 (2012)

    CrossRef  Google Scholar 

  50. X. Gao, F. Duan, S.C. Lim, M.S. Yip, Energy 59, 559 (2013)

    CrossRef  Google Scholar 

  51. D.M. Manias, E.A. Tingas, Y. Minamoto, H.G. Im, Combustion and Flame 208, 86 (2019)

    CrossRef  Google Scholar 

  52. Y. Minamoto, N. Swaminathan, R.S. Cant, T. Leung, Combustion Science and Technology 186(8), 1075 (2014)

    CrossRef  Google Scholar 

  53. Y. Minamoto, N. Swaminathan, Combustion and Flame 161(4), 1063 (2014)

    CrossRef  Google Scholar 

  54. Y. Minamoto, N. Swaminathan, S.R. Cant, T. Leung, Combustion and Flame 161(11), 2801 (2014)

    CrossRef  Google Scholar 

  55. Z.M. Nikolaou, N. Swaminathan, Combustion and Flame 161(12), 3073 (2014)

    CrossRef  Google Scholar 

  56. P.R. Medwell, P.A. Kalt, B.B. Dally, Combustion and Flame 148(1–2), 48 (2007)

    CrossRef  Google Scholar 

  57. B.B. Dally, A.N. Karpetis, R.S. Barlow, Proceedings of the Combustion Institute 29, 1147 (2002)

    CrossRef  Google Scholar 

  58. E. Oldenhof, M.J. Tummers, E. van Veen, D. Roekaerts, Combustion and Flame 157, 1167 (2010)

    CrossRef  Google Scholar 

  59. E. Oldenhof, M.J. Tummers, E.H. van Veen, D.J.E.M. Roekaerts, Combustion and Flame 158(8), 1553 (2011)

    CrossRef  Google Scholar 

  60. N. Kornev, H. Kröger, E. Hassel, Communications in Numerial Methods in Engineering 24, 875 (2008)

    CrossRef  Google Scholar 

  61. R.W. Bilger, S.H. Starner, R.J. Kee, Combustion and Flame 80(2), 135 (1990)

    CrossRef  Google Scholar 

  62. C. Duwig, P. Iudiciani, Fuel 123, 256 (2014)

    CrossRef  Google Scholar 

  63. Z. Li, A. Cuoci, A. Parente, Proceedings of the Combustion Institute (2018)

    Google Scholar 

  64. S.H. Lam, D.A. Goussis, Proc. Comb. Inst. 22, 931 (1988)

    CrossRef  Google Scholar 

  65. S.H. Lam, Combust. Sci. Technol. 89, 375 (1993)

    CrossRef  Google Scholar 

  66. Z. Li, R.M. Galassi, P.P. Ciottoli, A. Parente, M. Valorani, Combust. Flame 208, 281 (2019)

    CrossRef  Google Scholar 

  67. H.N. Najm, M. Valorani, D.A. Goussis, J. Prager, Combustion Theory and Modelling 14(2), 257 (2010)

    CrossRef  Google Scholar 

  68. N.A.K. Doan, N. Swaminathan, Combustion and Flame 201, 234 (2019)

    CrossRef  Google Scholar 

Download references

Acknowledgements

The authors wish to dedicate this contribution to the memory of Prof. S.H. Lam who passed away on Oct. 29, 2018.

HGI and MV acknowledge the support of a competitive research funding from King Abdullah University of Science and Technology (KAUST).

MV acknowledges the support of the Italian Ministry of University and Research (MIUR).

HNN acknowledges the support of the US Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences, and Biosciences. Sandia National Laboratories is a multimission laboratory managed and operated by the National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under Contract No. DE-NA-0003525.

AP and ZL have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 714605.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Valorani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Valorani, M. et al. (2020). Computational Singular Perturbation Method and Tangential Stretching Rate Analysis of Large Scale Simulations of Reactive Flows: Feature Tracking, Time Scale Characterization, and Cause/Effect Identification. Part 2, Analyses of Ignition Systems, Laminar and Turbulent Flames. In: Pitsch, H., Attili, A. (eds) Data Analysis for Direct Numerical Simulations of Turbulent Combustion. Springer, Cham. https://doi.org/10.1007/978-3-030-44718-2_4

Download citation