Abstract
Process mining bridges the gap between process model analysis and data-oriented analysis, by enabling automated discovery of process models, comparison of existing process models with an event log of the same process and improvement of existing process models. Process mining prerequisite is an information system that supports and controls real-life business processes and consequently stores event data, such as messages, transactions, and logs, as event logs in some type of a database. Event data is then extracted, filtered, and loaded into process mining software, where a certain type of process mining can be conducted. Process-aware information systems (PAIS), which assume an explicit notion of a case to correlate events of a process, provide such logs directly. However, many information systems that support execution of business processes are not explicitly process-aware and due to the variability of the event data sources, this phase of process mining is challenging and the most time-consuming. Consequently, various event log extraction techniques, approaches, and tools are being developed, both specific and generic. To make a contribution to the issue, this paper presents a systematic literature review conducted with the aim to answer the questions about genericity of the approaches, applicability by non-experts, and developed feasible tools.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Vander Aalst, W.M., Weijters, A.J.M.M.: Process mining: a research agenda. Comput. Ind. (2004). https://doi.org/10.1016/j.compind.2003.10.001
Kitchenham, B.: Procedures for undertaking systematic reviews. In: Joint Technical Report, Computer Science Department, Keele University (TR/SE-0401) and National ICT Australia Ltd. (0400011T.1) (2004)
Lu, X., Nagelkerke, M., van de Wiel, D., Fahland, D.: Discovering interacting artifacts from ERP systems. IEEE Trans. Serv. Comput. (2015). https://doi.org/10.1109/TSC.2015.2474358
Buijs, J.C.A.M.: Mapping Data Sources to XES in a Generic Way. Master’s thesis, Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherland (2010)
Fliegner, W.: Extracting process-related information from ERP systems for process discovery. Res. Logist. Prod. 4(4), 315–329 (2014)
Van der Aalst, W.M. et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011 Business Process Management Workshops. Lecture Notes in Business Information Processing, vol. 99, pp. 169–194 (2012). https://doi.org/10.1007/978-3-642-28108-2_19
Khan K.S., Ter Riet, G., Glanville, J., Sowden A.J., Kleijnen, J. (eds.): Undertaking Systematic Review of Research on Effectiveness, CRD’s Guidance for those Carrying Out or Commissioning Reviews, CRD Report Number 4, 2nd edn. NHS Centre for Reviews and Dissemination, University of York, IBSN 1 900640 20 1 (2001)
Alderson, P., Green, S., Higgins, J.P.T. (eds.): Cochrane reviewers’ handbook 4.2.2 [updated March 2004]. In: The Cochrane Library, Issue 1. Wiley, Chichester, UK (2004)
R’bigui, H., Cho, C.: The state-of-the-art of business process mining challenges. Int. J. Bus. Process. Integr. Man. (2017). https://doi.org/10.1504/IJBPIM.2017.088819
Dakic, D., Stefanovic, D., Cosic, I., Lolic, T., Medojevic, M.: Business process mining application: a literature review. In: Katalinic, B. (ed.) Proceedings of the 29th DAAAM International Symposium, pp. 0866–0875. Published by DAAAM International, ISBN 978-3-902734-20-4, ISSN 1726-9679, Vienna, Austria (2018). https://doi.org/10.2507/29th.daaam.proceedings.125
Tiwari, A., Turner, C.J., Majeed, B.: A review of business process mining: state-of-the-art and future trends. Bus. Process. Man. J. (2008). https://doi.org/10.1108/14637150810849373
Van Der Aalst, W.M.: Process mining: overview and opportunities. ACM Trans. Man. Inf. Syst. (2012). https://doi.org/10.1145/2229156.2229157
González López de Murillas, E., Reijers, H.A., van der Aalst, W.M.P.: Connecting databases with process mining: a meta model and toolset. Soft. Syst. Model (2019). https://doi.org/10.1007/s10270-018-0664-7
Rodríguez, C., Engel, R., Kostoska, G., Daniel, F., Casati, F., Aimar, M.: Eventifier: extracting process execution logs from operational databases. In: Proceedings of the Demonstration Track of BPM 2012, vol. 940, pp. 17–22 (2012)
Santana Calvo, H.A.: Artifact-centric log extraction for cloud systems. Master’s thesis, Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherland (2017)
Bernardi, M.L., Cimitile, M., Mercaldo, F.: Cross-organisational process mining in cloud environments. J. Inf. Knowl. Manag. (2018). https://doi.org/10.1142/s0219649218500144
Pérez-Castillo, R., Weber, B., Pinggera, J., Zugal, S., de Guzmán, I.G.R, Piattini, M.: Generating event logs from non-process-aware systems enabling business process mining. Enterpr. Inf. Syst. (2011). https://doi.org/10.1080/17517575.2011.587545
Esposito, P.M., Vaz, M.A.A., Rodrigues, S.A., De Souza, J.M.: MANA: Identifying and mining unstructured business processes. In: Lecture Notes in Business Information Processing (2013). https://doi.org/10.1007/978-3-642-36285-9-20
Jans, M.: From Relational Database to Valuable Event Logs for Process Mining Purposes: A Procedure (2017). https://doi.org/10.13140/RG.2.2.11343.69289
Nooijen, E.H.J., van Dongen, B.F., Fahland, D.: Automatic discovery of data-centric and artifact-centric processes. In: Lecture Notes in Business Information Processing (2012). https://doi.org/10.1007/978-3-642-36285-9_36
Piessens, D.A.M.: Event log extraction from SAP ECC 6.0. Master’s thesis, Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherland (2011)
Li, G., de Murillas, E.G.L., de Carvalho, R.M., Van der Aalst, W.M.P.: Extracting object-centric event logs to support process mining on databases. In: Information Systems in the Big Data Era (2018). https://doi.org/10.1007/978-3-319-92901-9_16
Calvanese, D., Kalayci, T.E., Montali, M., Tinella, S.: Ontology-based data access for extracting event logs from legacy data: the onprom tool and methodology. In: Lecture Notes in Business Information Processing (2017). https://doi.org/10.1007/978-3-319-59336-4_16
Selig, H.: Continuous Event Log Extraction for Process Mining. Degree project in information and communication technology. KTH Royal Institute of Technology, School of Information and Communication Technology, Stockholm, Sweden (2017)
Acknowledgments
This article has been produced as part of a research project: No. 47028 “Advancing Serbia’s competitiveness in the EU accession process” supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia for the period 2011th–2019th year.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Dakic, D., Stefanovic, D., Lolic, T., Narandzic, D., Simeunovic, N. (2020). Event Log Extraction for the Purpose of Process Mining: A Systematic Literature Review. In: Prostean, G., Lavios Villahoz, J., Brancu, L., Bakacsi, G. (eds) Innovation in Sustainable Management and Entrepreneurship. SIM 2019. Springer Proceedings in Business and Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-44711-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-44711-3_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-44710-6
Online ISBN: 978-3-030-44711-3
eBook Packages: Business and ManagementBusiness and Management (R0)