Skip to main content

Functional Metrics to Evaluate Network Vulnerability to Disasters

  • Chapter
  • First Online:
Guide to Disaster-Resilient Communication Networks

Part of the book series: Computer Communications and Networks ((CCN))

Abstract

Disasters can cause, intentionally or unintentionally, the failure of several network components at the same time. A vast body of literature focuses on understanding the impact of disasters on the network infrastructure to enable the design of more robust networks. However, these multiple failures also affect the applications running over the network infrastructure. Even when the impact of a disaster on the structural performance indicators is insignificant, the functional implications can be substantial. More importantly, a small degradation in network performance can result in severe disruptions of overlay applications, or even completely prevent their proper functioning. Therefore, it is essential to analyze the impact of a disaster on the functional aspects of the network, i.e. the Quality of Service (QoS) offered to the applications and the Quality of Experience (QoE) perceived by the users. In this chapter, we review the functional metrics for evaluating the impact of disasters on applications and users. We specify relevant packet- and network-based functional metrics as well as perceived subjective metrics, and demonstrate the impact of disasters on QoS and QoE metrics in a case study.

Online material is available at https://github.com/carlosnatalino/chapter-functional-metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://medium.com/netflix-techblog/per-title-encode-optimization-7e99442b62a2.

  2. 2.

    The page http://www.movable-type.co.uk/scripts/latlong.html describes the appropriate method to compute the distance.

References

  1. Araújo F, Rosário D, Cerqueira E, Villas LA (2019) A hybrid energy-aware video bitrate adaptation algorithm for mobile networks. In: Conference on Wireless On-demand Network Systems and Services (WONS), pp 146–153. https://doi.org/10.23919/WONS.2019.8795455

  2. Barbosa F, de Sousa A, Agra A (2019) Evaluation and design of elastic optical networks resilient to multiple node failures. In: International Conference on the Design of Reliable Communication Networks (DRCN), pp 154–161. https://doi.org/10.1109/DRCN.2019.8713761

  3. Christodoulopoulos K, Tomkos I, Varvarigos EA (2011) Elastic bandwidth allocation in flexible OFDM-based optical networks. IEEE/OSA J Lightwave Technol 29(9):1354–1366. https://doi.org/10.1109/JLT.2011.2125777

    Article  Google Scholar 

  4. Chu Yh, Rao SG, Seshan S, Zhang H (2002) A case for end system multicast. IEEE J Sel Areas Commun 2(8):1456–1471. https://doi.org/10.1109/JSAC.2002.803066

    Article  Google Scholar 

  5. Cisco White Paper (2019) Cisco visual networking index: forecast and trends, 2017–2022. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html

  6. Georgopoulos P, Elkhatib Y, Broadbent M, Mu M, Race N (2013) Towards network-wide QoE fairness using openflow-assisted adaptive video streaming. In: ACM SIGCOMM Workshop on Future Human-centric Multimedia Networking, FhMN’13. ACM, New York, pp 15–20. https://doi.org/10.1145/2491172.2491181

  7. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–7826. https://doi.org/10.1073/pnas.122653799

    Article  MathSciNet  MATH  Google Scholar 

  8. Goścień R, Walkowiak K, Klinkowski M (2014) Distance-adaptive transmission in cloud-ready elastic optical networks. IEEE/OSA J Opt Commun Netw 6(10):816–828. https://doi.org/10.1364/JOCN.6.000816

    Article  Google Scholar 

  9. Greengrass J, Evans J, Begen AC (2009) Not all packets are equal, part I: streaming video coding and SLA requirements. IEEE Internet Comput 13(1):70–75. https://doi.org/10.1109/MIC.2009.14

    Article  Google Scholar 

  10. Huynh-Thu Q, Ghanbari M (2008) Scope of validity of PSNR in image/video quality assessment. Electron Lett 44(13):800–801. https://doi.org/10.1049/el:20080522

    Article  Google Scholar 

  11. ITU-T P.800.1 (2016) Methods for objective and subjective assessment of speech and video quality. Standard, Telecommunication Standardization Sector of ITU

    Google Scholar 

  12. Jailton J, Carvalho T, Valente W, Natalino C, Frances R, Dias K (2013) A quality of experience handover architecture for heterogeneous mobile wireless multimedia networks. IEEE Commun Mag 51(6):152–159. https://doi.org/10.1109/MCOM.2013.6525609

    Article  Google Scholar 

  13. Junior WL, Rosário D, Cerqueira E, Villas LA, Gerla M (2018) A game theory approach for platoon-based driving for multimedia transmission in VANETs. Wirel Commun Mob Comput 2018. https://doi.org/10.1155/2018/2414658

  14. Katz-Bassett E, Madhyastha HV, Adhikari VK, Scott C, Sherry J, Van Wesep P, Anderson T, Krishnamurthy A (2010) Reverse traceroute. In: USENIX Conference on Networked Systems Design and Implementation, NSDI’10, p 15 (2010)

    Google Scholar 

  15. Klinkowski M, Pedro J, Careglio D, Pióro M, Pires J, Monteiro P, Solé-Pareta J (2010) An overview of routing methods in optical burst switching networks. Opt Switching Netw 7(2):41–53. https://doi.org/10.1016/j.osn.2010.01.001

    Article  Google Scholar 

  16. Kurose JF, Ross K (2012) Computer networking: a top-down approach featuring the Internet. Pearson Education

    Google Scholar 

  17. Kwon M, Fahmy S (2002) Topology-aware overlay networks for group communication. In: International workshop on network and operating systems support for digital audio and video, NOSSDAV’02. ACM, New York, pp 127–136. https://doi.org/10.1145/507670.507688

  18. Lareida A, Meier D, Bocek T, Stiller B (2016) Towards path quality metrics for overlay networks. In: IEEE Conference on Local Computer Networks (LCN), pp 156–159

    Google Scholar 

  19. Machado VA, Natalino C, Oliveira RS, Melo AM, Silva M, Francês CRL, Costa JCWA, Vijaykumar NL, Hirata CM (2011) A new proposal to provide estimation of QoS and QoE over WiMAX networks: an approach based on computational intelligence and discrete-event simulation. In: IEEE Latin-American Conference on Communications (LatinCOM), pp 1–6. https://doi.org/10.1109/LatinCOM.2011.6107419

  20. Manzano M, Sahneh F, Scoglio C, Calle E, Marzo JL (2014) Robustness surfaces of complex networks. Sci Rep 4:6133. https://doi.org/10.1038/srep06133

    Article  Google Scholar 

  21. Natalino C, de Sousa A, Wosinska L, Furdek M (2018) On the trade-offs between user-to-replica distance and CDN robustness to link cut attacks. In: International Workshop on Resilient Networks Design and Modeling (RNDM), pp 1–7. https://doi.org/10.1109/RNDM.2018.8489838

  22. Natalino C, Yayimli A, Wosinska L, Furdek M (2017) Content accessibility in optical cloud networks under targeted link cuts. In: International Conference on Optical Network Design and Modeling (ONDM), pp 1–6. https://doi.org/10.23919/ONDM.2017.7958546

  23. Natalino C, Yayimli A, Wosinska L, Furdek M (2019) Infrastructure upgrade framework for content delivery networks robust to targeted attacks. Opt Switching Netw 31:202–210. https://doi.org/10.1016/j.osn.2018.10.006

    Article  Google Scholar 

  24. Orlowski S, Wessäly R, Pióro M, Tomaszewski A (2010) SNDlib 1.0—survivable network design library. Networks 55(3):276–286

    Google Scholar 

  25. Oyman O, Singh S (2012) Quality of experience for HTTP adaptive streaming services. IEEE Commun Mag 50(4):20–27. https://doi.org/10.1109/MCOM.2012.6178830

    Article  Google Scholar 

  26. Rai S, Agrawal D (1990) Distributed computing network reliability. IEEE Computer Society, Los Alamitos

    Google Scholar 

  27. Raza MR, Fiorani M, Rostami A, Öhlen P, Wosinska L, Monti P (2018) Dynamic slicing approach for multi-tenant 5G transport networks (invited). IEEE/OSA J Opt Commun Netw 10(1):A77–A90. https://doi.org/10.1364/JOCN.10.000A77

    Article  Google Scholar 

  28. Rueda DF, Calle E, Marzo JL (2017) Robustness comparison of 15 real telecommunication networks: structural and centrality measurements. J Netw Syst Manage 25(2):269–289. https://doi.org/10.1007/s10922-016-9391-y

    Article  Google Scholar 

  29. de Santi J, Drummond AC, da Fonseca NLS, Chen X (2015) Holding-time-aware dynamic traffic grooming algorithms based on multipath routing for WDM optical networks. Opt Switching Netw 16:21–35. https://doi.org/10.1016/j.osn.2014.10.002

    Article  Google Scholar 

  30. Schulz P, Matthe M, Klessig H, Simsek M, Fettweis G, Ansari J, Ashraf SA, Almeroth B, Voigt J, Riedel I, Puschmann A, Mitschele-Thiel A, Muller M, Elste T, Windisch M (2017) Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture. IEEE Commun Mag 55(2):70–78. https://doi.org/10.1109/MCOM.2017.1600435CM

    Article  Google Scholar 

  31. Sodagar I (2011) The MPEG-DASH standard for multimedia streaming over the Internet. IEEE Multimedia 18(4):62–67. https://doi.org/10.1109/MMUL.2011.71

    Article  Google Scholar 

  32. Tessinari RS, Puype B, Colle D, Garcia AS (2016) ElasticO++: an elastic optical network simulation framework for OMNeT++. Opt Switching Netw 22:95–104. https://doi.org/10.1016/j.osn.2016.07.001

    Article  Google Scholar 

  33. Testolin A, Zanforlin M, De Filippo De Grazia M, Munaretto D, Zanella A, Zorzi M, Zorzi M (2014) A machine learning approach to QoE-based video admission control and resource allocation in wireless systems. In: 2014 13th Annual Mediterranean Ad hoc Networking Workshop (MED-HOC-NET), pp 31–38. https://doi.org/10.1109/MedHocNet.2014.6849102

  34. Wang H, Hernandez JM, Van Mieghem P (2008) Betweenness centrality in a weighted network. Phys Rev E 77:046105. https://doi.org/10.1103/PhysRevE.77.046105

    Article  Google Scholar 

  35. Wang R, Mukherjee B (2013) Provisioning in elastic optical networks with non-disruptive defragmentation. IEEE/OSA J Lightwave Technol 31(15):2491–2500. https://doi.org/10.1109/JLT.2013.2268535

    Article  Google Scholar 

  36. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  37. Yanggratoke R, Ahmed J, Ardelius J, Flinta C, Johnsson A, Gillblad D, Stadler R (2015) Predicting service metrics for cluster-based services using real-time analytics. In: International Conference on Network and Service Management (CNSM), pp 135–143. https://doi.org/10.1109/CNSM.2015.7367349

Download references

Acknowledgements

This chapter is based on work from COST Action CA15127 (“Resilient communication services protecting end-user applications from disaster-based failures—RECODIS”) supported by COST (European Cooperation in Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Natalino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Natalino, C., Ristov, S., Wosinska, L., Furdek, M. (2020). Functional Metrics to Evaluate Network Vulnerability to Disasters. In: Rak, J., Hutchison, D. (eds) Guide to Disaster-Resilient Communication Networks. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-44685-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44685-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44684-0

  • Online ISBN: 978-3-030-44685-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics