Skip to main content

Further Steps Towards a Logic of Polarization in Social Networks

Part of the Lecture Notes in Computer Science book series (LNAI,volume 12061)

Abstract

In this paper we look at different ways of modally defining properties related to the concept of balance in signed social networks where relations can be either positive or negative. The motivation is to be able to formally reason about the social phenomenon of group polarization, for which balance theory forms a network-theoretical underpinning. The starting point is a recently developed basic modal logic that axiomatizes the class of social networks that are balanced up to a certain degree. This property is not modally definable but can be captured using a deduction rule. In this paper we examine different possibilities for extending this basic language, in order to, first, be able to define frame properties such as balance and related properties such as non-overlapping positive and negative relations and collective connectedness as axioms, and, second, be able to define the property of full balance rather than balanced-up-to-a-degree. We consider extensions with both static modalities such as the universal and the difference modality, the intersection modality, and nominals known from hybrid logic, as well as dynamic global bridge modalities known from sabotage logic. Along the way we provide axioms for weak balance. Finally, to explore measures of how far a network is from polarization, we consider and compare variations of distance measures between models in relation to balance.

Keywords

  • Polarization
  • Balance
  • Social network logic
  • Modal logic
  • Network theory

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-44638-3_20
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-44638-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    We will assume some familiarity with Kripke semantics for modal logic; see, e.g., [5].

  2. 2.

    We denote as \(\mathbb {N}^{+}\).

References

  1. Ågotnes, T., van der Hoek, W., Wooldridge, M.: Conservative social laws. In: Proceedings of the 20th European Conference on Artificial Intelligence, pp. 49–54. IOS Press (2012)

    Google Scholar 

  2. Areces, C., ten Cate, B.: Hybrid logics. In: van Benthem, J., Blackburn, P., Wolter, F. (eds.) Handbook of Modal Logic, pp. 821–868. Elsevier, Amsterdam (2006)

    Google Scholar 

  3. Areces, C., Fervari, R., Hoffmann, G.: Relation-changing modal operators. Log. J. IGPL 23(4), 601–627 (2015)

    MathSciNet  CrossRef  Google Scholar 

  4. Aucher, G., van Benthem, J., Grossi, D.: Modal logics of sabotage revisited. J. Logic Comput. 28(2), 269–303 (2017)

    MathSciNet  CrossRef  Google Scholar 

  5. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, New York (2001)

    CrossRef  Google Scholar 

  6. Bramson, A., et al.: Understanding polarization: meanings, measures, and model evaluation. Philos. Sci. 84(1), 115–159 (2017)

    MathSciNet  CrossRef  Google Scholar 

  7. Caridroit, T., Konieczny, S., de Lima, T., Marquis, P.: On distances between KD45n Kripke models and their use for belief revision. In: Proceedings of the ECAI, pp. 1053–1061. IOS Press (2016)

    Google Scholar 

  8. Cartwright, D., Harary, F.: Structural balance: a generalization of Heider’s theory. Psychol. Rev. 63(5), 277–293 (1956)

    CrossRef  Google Scholar 

  9. Christoff, Z., Hansen, J.U.: A logic for diffusion in social networks. J. Appl. Logic 13(1), 48–77 (2015)

    MathSciNet  CrossRef  Google Scholar 

  10. Davis, J.A.: Clustering and structural balance in graphs. Hum. Relat. 20(2), 181–187 (1967)

    CrossRef  Google Scholar 

  11. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. SYLI, vol. 337. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5839-4

    CrossRef  MATH  Google Scholar 

  12. Doreian, P., Mrvar, A.: A partitioning approach to structural balance. Soc. Netw. 18(2), 149–168 (1996)

    CrossRef  Google Scholar 

  13. Easley, D., Kleinberg, J.: Networks, Crowds and Markets. Cambridge University Press, New York (2010)

    CrossRef  Google Scholar 

  14. Estrada, E., Benzi, M.: Walk-based measure of balance in signed networks: detecting lack of balance in social networks. Phys. Rev. E 90(4), 042802 (2014)

    CrossRef  Google Scholar 

  15. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. The MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  16. Granovetter, M.S.: The strength of weak ties. In: Social Networks, pp. 347–367. Academic Press (1977)

    Google Scholar 

  17. Harary, F.: On the notion of balance of a signed graph. Mich. Math. J. 2(2), 143–146 (1953)

    MathSciNet  CrossRef  Google Scholar 

  18. Harary, F.: On the measurement of structural balance. Behav. Sci. 4(4), 316–323 (1959)

    MathSciNet  CrossRef  Google Scholar 

  19. Heider, F.: Attitudes and cognitive organization. J. Psychol. 21, 107–112 (1946)

    CrossRef  Google Scholar 

  20. Hendricks, V.F., Hansen, P.G.: Infostorms. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32765-5

    CrossRef  Google Scholar 

  21. Kirkley, A., Cantwell, G.T., Newman, M.E.J.: Balance in signed networks. Phys. Rev. E 99(1), 012320 (2019)

    CrossRef  Google Scholar 

  22. Leskovec, J., Huttenlocker, D., Kleinberg, J.: Signed networks in social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1361–1370 (2010)

    Google Scholar 

  23. Li, D.: Losing Connection: the Modal Logic of Definable Link Deletion. ILLC Technical Notes Series, X-2019-01 (2019)

    Google Scholar 

  24. Pedersen, M.Y.: Polarization and echo chambers: a logical analysis of balance and triadic closure in social networks. Master of Logic Thesis Series, MoL-2019-10 (2019)

    Google Scholar 

  25. Pedersen, M.Y., Smets, S., Ågotnes, T.: Analyzing echo chambers: a logic of strong and weak ties. In: Blackburn, P., Lorini, E., Guo, M. (eds.) LORI 2019. LNCS, vol. 11813, pp. 183–198. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-60292-8_14

    CrossRef  MATH  Google Scholar 

  26. Roelofsen, F.: Distributed knowledge. J. Appl. Non-Class. Logics 17(2), 255–273 (2007)

    MathSciNet  CrossRef  Google Scholar 

  27. Seligman, J., Liu, F., Girard, P.: Facebook and the epistemic logic of friendship. In Proceedings of the Conference on Theoretical Aspects of Rationality and Knowledge, pp. 229–238 (2013)

    Google Scholar 

  28. Sunstein, C.R.: The law of group polarization. J. Political Philos. 10(2), 175–195 (2002)

    CrossRef  Google Scholar 

  29. Sunstein, C.R.: Group polarization and 12 angry men. Negot. J. 23(4), 443–447 (2007)

    CrossRef  Google Scholar 

  30. Xia, W., Cao, M., Johansson, K.H.: Structural balance and opinion separation in trust-mistrust social networks. IEEE Trans. Control Netw. Syst. 3(1), 46–56 (2015)

    MathSciNet  CrossRef  Google Scholar 

  31. Xiong, Z.: On the logic of multicast messaging and balance in social networks. Doctoral dissertation, University of Bergen (2017)

    Google Scholar 

  32. Xiong, Z., Ågotnes, T.: On the logic of balance in social networks. J. Logic Lang. Inf. 29, 53–75 (2020). https://doi.org/10.1007/s10849-019-09297-0

    MathSciNet  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Young Pedersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Pedersen, M.Y., Smets, S., Ågotnes, T. (2020). Further Steps Towards a Logic of Polarization in Social Networks. In: Dastani, M., Dong, H., van der Torre, L. (eds) Logic and Argumentation. CLAR 2020. Lecture Notes in Computer Science(), vol 12061. Springer, Cham. https://doi.org/10.1007/978-3-030-44638-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44638-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44637-6

  • Online ISBN: 978-3-030-44638-3

  • eBook Packages: Computer ScienceComputer Science (R0)