Multimodal Optical Diagnostics of Cancer pp 397-424 | Cite as
Multimodal Optical Diagnostic in Minimally Invasive Surgery
- 82 Downloads
Abstract
The aspects of using optical instruments for minimally invasive interventions in abdominal surgery are considered. The results of clinical and preclinical trials of the application of the multimodal optical approaches in endoscopic instruments for the treatment and diagnosis of abdominal cancer are reviewed and discussed. A significant increase in image contrast, sensitivity, and specificity of cancer detection is noted. Novel fiber-optic system for versatile evaluation of the bile duct in patients with mechanical jaundice is described. It has been demonstrated that multimodal optical biopsy can be integrated with standard semi-automatic biopsy systems using fine-needle optical probes with immediate comparison of tumor and healthy tissue optical properties for determination of the tissue state. The applicability of this technique to the diagnosis of hepatocellular carcinoma has been demonstrated.
Notes
Acknowledgments
This study was supported by the Russian Science Foundation under project No 18-15-00201. E. Zherebtsov also acknowledges the support of the Academy of Finland (grant No 318281) and V. Dremin also acknowledges the support of the Russian Science Foundation under project No 19-79-00082.
References
- 1.Wickham, J.E.A.: The new surgery. Br. Med. J. (Clin. Res. Ed.). 295, 1581–1582 (1987). https://doi.org/10.1136/bmj.295.6613.1581CrossRefGoogle Scholar
- 2.Siddaiah-Subramanya, M., Tiang, K., Nyandowe, M.: A new era of minimally invasive surgery: progress and development of major technical innovations in general surgery over the last decade. Surg. J. 03, e163–e166 (2017). https://doi.org/10.1055/s-0037-1608651CrossRefGoogle Scholar
- 3.Pazouki, A.: Minimally invasive surgical sciences: a new scientific opportunity for all scientists. J. Minim. Invasive Surg. Sci. 1, 9–10 (2012). https://doi.org/10.5812/jmiss.2976CrossRefGoogle Scholar
- 4.Breedveld, P., Stassen, H.G., Meijer, D.W., Jakimowicz, J.J.: Observation in laparoscopic surgery: overview of impeding effects and supporting aids. J. Laparoendosc. Adv. Surg. Tech. A. 10, 231–241 (2000). https://doi.org/10.1089/lap.2000.10.231CrossRefPubMedGoogle Scholar
- 5.Dankelman, J., Wentink, M., Stassen, H.G.: Human reliability and training in minimally invasive surgery. Minim. Invasive Ther. Allied Technol. 12, 129–135 (2003). https://doi.org/10.1080/13645700310007689CrossRefPubMedGoogle Scholar
- 6.Jones, D.B., Brewer, J.D., Soper, N.J.: The influence of three-dimensional video systems on laparoscopic task performance. Surg. Laparosc. Endosc. 6, 191–197 (1996)CrossRefGoogle Scholar
- 7.Lewin, J.S.: Future directions in minimally invasive intervention. Trans. Am. Clin. Climatol. Assoc. 128, 346–352 (2017)PubMedCentralGoogle Scholar
- 8.Wang, T.D., Van Dam, J.: Optical biopsy: a new frontier in endoscopic detection and diagnosis. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2, 744–753 (2004)Google Scholar
- 9.Kiesslich, R., Goetz, M., Hoffman, A., Galle, P.R.: New imaging techniques and opportunities in endoscopy. Nat. Rev. Gastroenterol. Hepatol. 8, 547–553 (2011). https://doi.org/10.1038/nrgastro.2011.152CrossRefPubMedGoogle Scholar
- 10.Hoffman, A., Manner, H., Rey, J.W., Kiesslich, R.: A guide to multimodal endoscopy imaging for gastrointestinal malignancy-an early indicator. Nat. Rev. Gastroenterol. Hepatol. 14, 421–434 (2017). https://doi.org/10.1038/nrgastro.2017.46CrossRefPubMedGoogle Scholar
- 11.Bedard, N., Pierce, M., El-Naggar, A., Anandasabapathy, S., Gillenwater, A., Richards-Kortum, R.: Emerging roles for multimodal optical imaging in early cancer detection: a global challenge. Technol. Cancer Res. Treat. 9, 211–217 (2010). https://doi.org/10.1177/153303461000900210CrossRefPubMedPubMedCentralGoogle Scholar
- 12.Georgakoudi, I., Jacobson, B.C., Van Dam, J., Backman, V., Wallace, M.B., Müller, M.G., Zhang, Q., Badizadegan, K., Sun, D., Thomas, G.A., Perelman, L.T., Feld, M.S.: Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus. Gastroenterology. 120, 1620–1629 (2001). https://doi.org/10.1053/gast.2001.24842CrossRefPubMedGoogle Scholar
- 13.Kara, M.A., Bergman, J.J.: Autofluorescence imaging and narrow-band imaging for the detection of early neoplasia in patients with Barrett’s esophagus. Endoscopy. 38, 627–631 (2006). https://doi.org/10.1055/s-2006-925385CrossRefPubMedGoogle Scholar
- 14.Curvers, W.L., Herrero, L.A., Wallace, M.B., Wong Kee Song, L.M., Ragunath, K., Wolfsen, H.C., Prasad, G.A., Wang, K.K., Subramanian, V., Weusten, B.L.A.M., Ten Kate, F.J., Bergman, J.J.G.H.M.: Endoscopic tri-modal imaging is more effective than standard endoscopy in identifying early-stage neoplasia in Barrett’s esophagus. Gastroenterology. 139, 1106–1114.e1 (2010). https://doi.org/10.1053/j.gastro.2010.06.045CrossRefPubMedGoogle Scholar
- 15.von Holstein, C.S., Nilsson, A.M., Andersson-Engels, S., Willén, R., Walther, B., Svanberg, K.: Detection of adenocarcinoma in Barrett’s oesophagus by means of laser induced fluorescence. Gut. 39, 711–716 (1996). https://doi.org/10.1136/gut.39.5.711CrossRefGoogle Scholar
- 16.Wang, K.K., Okoro, N., Prasad, G., WongKeeSong, M., Buttar, N.S., Tian, J.: Endoscopic evaluation and advanced imaging of Barrett’s esophagus. Gastrointest. Endosc. Clin. N. Am. 21, 39–51 (2011). https://doi.org/10.1016/j.giec.2010.09.013CrossRefPubMedPubMedCentralGoogle Scholar
- 17.Kato, M., Kaise, M., Yonezawa, J., Goda, K., Toyoizumi, H., Yoshimura, N., Yoshida, Y., Kawamura, M., Tajiri, H.: Trimodal imaging endoscopy may improve diagnostic accuracy of early gastric neoplasia: a feasibility study. Gastrointest. Endosc. 70, 899–906 (2009). https://doi.org/10.1016/j.gie.2009.03.1171CrossRefPubMedGoogle Scholar
- 18.van den Broek, F.J.C., Fockens, P., Van Eeden, S., Kara, M.A., Hardwick, J.C.H., Reitsma, J.B., Dekker, E.: Clinical evaluation of endoscopic trimodal imaging for the detection and differentiation of colonic polyps. Clin. Gastroenterol. Hepatol. 7, 288–295 (2009). https://doi.org/10.1016/j.cgh.2008.10.025CrossRefPubMedGoogle Scholar
- 19.Joshi, B.P., Pant, A., Duan, X., Prabhu, A., Wamsteker, E.J., Kwon, R.S., Elta, G.H., Owens, S.R., Appelman, H.D., Wang, T.D., Turgeon, D.K.: Multimodal video colonoscope for targeted wide-field detection of nonpolypoid colorectal neoplasia. Gastroenterology. 150, 1084–1086 (2016). https://doi.org/10.1053/j.gastro.2016.02.075CrossRefPubMedPubMedCentralGoogle Scholar
- 20.Kim, Y.-I., Jeong, S., Jung, K.O., Song, M.G., Lee, C.-H., Chung, S.-J., Park, J.Y., Cha, M.G., Lee, S.G., Jun, B.-H., Lee, Y.-S., Hwang, D.W., Youn, H., Kang, K.W., Lee, Y.-S., Jeong, D.H., Lee, D.S.: Simultaneous detection of EGFR and VEGF in colorectal cancer using fluorescence-Raman endoscopy. Sci. Rep. 7, 1035 (2017). https://doi.org/10.1038/s41598-017-01020-yCrossRefPubMedPubMedCentralGoogle Scholar
- 21.Jeong, S., Kim, Y.I., Kang, H., Kim, G., Cha, M.G., Chang, H., Jung, K.O., Kim, Y.H., Jun, B.H., Hwang, D.W., Lee, Y.S., Youn, H., Lee, Y.S., Kang, K.W., Lee, D.S., Jeong, D.H.: Fluorescence-Raman dual modal endoscopic system for multiplexed molecular diagnostics. Sci. Rep. 5, 9455 (2015). https://doi.org/10.1038/srep09455CrossRefPubMedPubMedCentralGoogle Scholar
- 22.Miller, S.J., Lee, C.M., Joshi, B.P., Gaustad, A., Seibel, E.J., Wang, T.D.: Targeted detection of murine colonic dysplasia in vivo with flexible multispectral scanning fiber endoscopy. J. Biomed. Opt. 17, 021103 (2012). https://doi.org/10.1117/1.JBO.17.2.021103CrossRefPubMedPubMedCentralGoogle Scholar
- 23.Tumlinson, A.R., Hariri, L.P., Utzinger, U., Barton, J.K.: Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement. Appl. Opt. 43, 113–121 (2004). https://doi.org/10.1364/AO.43.000113CrossRefPubMedGoogle Scholar
- 24.Winkler, A.M., Rice, P.F.S., Weichsel, J., Watson, J.M., Backer, M.V., Backer, J.M., Barton, J.K.: In vivo, dual-modality OCT/LIF imaging using a novel VEGF receptor-targeted NIR fluorescent probe in the AOM-treated mouse model. Mol. Imaging Biol. 13, 1173–1182 (2011). https://doi.org/10.1007/s11307-010-0450-6CrossRefPubMedPubMedCentralGoogle Scholar
- 25.Carbary-Ganz, J.L., Welge, W.A., Barton, J.K., Utzinger, U.: In vivo molecular imaging of colorectal cancer using quantum dots targeted to vascular endothelial growth factor receptor 2 and optical coherence tomography/laser-induced fluorescence dual-modality imaging. J. Biomed. Opt. 20, 096015 (2015). https://doi.org/10.1117/1.JBO.20.9.096015CrossRefPubMedPubMedCentralGoogle Scholar
- 26.Li, Y., Jing, J., Yu, J., Zhang, B., Huo, T., Yang, Q., Chen, Z.: Multimodality endoscopic optical coherence tomography and fluorescence imaging technology for visualization of layered architecture and subsurface microvasculature. Opt. Lett. 43, 2074–2077 (2018). https://doi.org/10.1364/ol.43.002074CrossRefPubMedPubMedCentralGoogle Scholar
- 27.Li, Y., Zhu, Z., Chen, J.J., Jing, J.C., Sun, C.-H., Kim, S., Chung, P.-S., Chen, Z.: Multimodal endoscopy for colorectal cancer detection by optical coherence tomography and near-infrared fluorescence imaging. Biomed. Opt. Express. 10, 2419–2429 (2019). https://doi.org/10.1364/boe.10.002419CrossRefPubMedPubMedCentralGoogle Scholar
- 28.Charanya, T., York, T., Bloch, S., Sudlow, G., Liang, K., Garcia, M., Akers, W.J., Rubin, D., Gruev, V., Achilefu, S.: Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer. J. Biomed. Opt. 19, 126002 (2014). https://doi.org/10.1117/1.jbo.19.12.126002CrossRefPubMedPubMedCentralGoogle Scholar
- 29.Skubleny, D., Dang, J.T., Skulsky, S., Switzer, N., Tian, C., Shi, X., de Gara, C., Birch, D.W., Karmali, S.: Diagnostic evaluation of sentinel lymph node biopsy using indocyanine green and infrared or fluorescent imaging in gastric cancer: a systematic review and meta-analysis. Surg. Endosc. 32, 2620–2631 (2018). https://doi.org/10.1007/s00464-018-6100-9CrossRefPubMedGoogle Scholar
- 30.Zheng, C., Lau, L.W., Cha, J.: Dual-display laparoscopic laser speckle contrast imaging for real-time surgical assistance. Biomed. Opt. Express. 9, 5962–5981 (2018). https://doi.org/10.1364/boe.9.005962CrossRefPubMedPubMedCentralGoogle Scholar
- 31.Heeman, W., Dijkstra, K., Hoff, C., Koopal, S., Pierie, J.-P., Bouma, H., Boerma, E.C.: Application of laser speckle contrast imaging in laparoscopic surgery. Biomed. Opt. Express. 10, 2010–2019 (2019). https://doi.org/10.1364/boe.10.002010CrossRefPubMedPubMedCentralGoogle Scholar
- 32.Hariri, L.P., Bonnema, G.T., Schmidt, K., Winkler, A.M., Korde, V., Hatch, K.D., Davis, J.R., Brewer, M.A., Barton, J.K.: Laparoscopic optical coherence tomography imaging of human ovarian cancer. Gynecol. Oncol. 114, 188–194 (2009). https://doi.org/10.1016/j.ygyno.2009.05.014CrossRefPubMedPubMedCentralGoogle Scholar
- 33.Zuzak, K.J., Naik, S.C., Alexandrakis, G., Hawkins, D., Behbehani, K., Livingston, E.H.: Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery. Anal. Chem. 79, 4709–4715 (2007). https://doi.org/10.1021/ac070367nCrossRefPubMedGoogle Scholar
- 34.Baltussen, E.J.M., Kok, E.N.D., Brouwer de Koning, S.G., Sanders, J., Aalbers, A.G.J., Kok, N.F.M., Beets, G.L., Flohil, C.C., Bruin, S.C., Kuhlmann, K.F.D., Sterenborg, H.J.C.M., Ruers, T.J.M.: Hyperspectral imaging for tissue classification, a way toward smart laparoscopic colorectal surgery. J. Biomed. Opt. 24, 016002 (2019). https://doi.org/10.1117/1.jbo.24.1.016002CrossRefPubMedCentralGoogle Scholar
- 35.Kikuchi, H., Kamiya, K., Hiramatsu, Y., Miyazaki, S., Yamamoto, M., Ohta, M., Baba, S., Konno, H.: Laparoscopic narrow-band imaging for the diagnosis of peritoneal metastasis in gastric cancer. Ann. Surg. Oncol. 21, 3954–3962 (2014). https://doi.org/10.1245/s10434-014-3781-8CrossRefPubMedGoogle Scholar
- 36.Schnelldorfer, T., Jenkins, R.L., Birkett, D.H., Wright, V.J., Price, L.L., Georgakoudi, I.: Laparoscopic narrow band imaging for detection of occult cancer metastases: a randomized feasibility trial. Surg. Endosc. 30, 1656–1661 (2016). https://doi.org/10.1007/s00464-015-4401-9CrossRefPubMedGoogle Scholar
- 37.Kandurova, K., Dremin, V., Zherebtsov, E., Potapova, E., Alyanov, A., Mamoshin, A., Ivanov, Y., Borsukov, A., Dunaev, A.: Fiber-optic system for intraoperative study of abdominal organs during minimally invasive surgical interventions. Appl. Sci. 9, 217 (2019). https://doi.org/10.3390/app9020217CrossRefGoogle Scholar
- 38.Becker, G.J.: 2000 RSNA annual oration in diagnostic radiology: the future of interventional radiology. Radiology. 220, 281–292 (2001). https://doi.org/10.1148/radiology.220.2.r01au39281CrossRefPubMedGoogle Scholar
- 39.Cope, C.: Percutaneous nonvascular abdominal interventions: reflections on the past and ideas for the future. J. Vasc. Interv. Radiol. 14, 861–864 (2003). https://doi.org/10.1097/01.RVI.0000064854.87207.8CrossRefPubMedGoogle Scholar
- 40.Lin, Q., Yang, R., Cai, K., Guan, P., Xiao, W., Wu, X.: Strategy for accurate liver intervention by an optical tracking system. Biomed. Opt. Express. 6, 3287–3302 (2015). https://doi.org/10.1364/boe.6.003287CrossRefPubMedPubMedCentralGoogle Scholar
- 41.Watkinson, A.F., Adam, A. (eds.): Interventional Radiology: A Practical Guide. Radcliffe Medical Press, Oxford and New York (1996)Google Scholar
- 42.Bartolomé, F., Abramov, A.Y.: Measurement of mitochondrial NADH and FAD autofluorescence in live cells. Methods Mol. Biol. 1264, 263–270 (2015). https://doi.org/10.1007/978-1-4939-2257-4_23CrossRefPubMedGoogle Scholar
- 43.Kandurova, K., Dremin, V., Zherebtsov, E., Potapova, E., Filina, M., Dunaev, A., Mamoshin, A., Alyanov, A., Muradyan, V.: Optical diagnostics of bile duct tissues state with tumor compression. In: Proc. SPIE 11065, p. 1106508. SPIE-Intl Soc Optical Eng (2019)Google Scholar
- 44.Anidjar, M., Ettori, D., Cussenot, O., Meria, P., Desgrandchamps, F., Cortesse, A., Teillac, P., Le Duc, A., Avrillier, S.: Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength. J. Urol. 156, 1590–1596 (1996)CrossRefGoogle Scholar
- 45.Bogomolov, A., Belikova, V., Zabarylo, U.J., Bibikova, O., Usenov, I., Sakharova, T., Krause, H., Minet, O., Feliksberger, E., Artyushenko, V.: Synergy effect of combining fluorescence and mid infrared fiber spectroscopy for kidney tumor diagnostics. Sensors. 17, E2548 (2017). https://doi.org/10.3390/s17112548CrossRefPubMedGoogle Scholar
- 46.Koenig, F., McGovern, F.J., Althausen, A.F., Deutsch, T.F., Schomacker, K.T.: Laser induced autofluorescence diagnosis of bladder cancer. J. Urol. 156, 1597–1601 (1996)CrossRefGoogle Scholar
- 47.Mayinger, B., Jordan, M., Horner, P., Gerlach, C., Muehldorfer, S., Bittorf, B.R., Matzel, K.E., Hohenberger, W., Hahn, E.G., Guenther, K.: Endoscopic light-induced autofluorescence spectroscopy for the diagnosis of colorectal cancer and adenoma. J. Photochem. Photobiol. B. 70, 13–20 (2003)CrossRefGoogle Scholar
- 48.Palmer, S., Litvinova, K., Dunaev, A., Yubo, J., McGloin, D., Nabi, G.: Optical redox ratio and endogenous porphyrins in the detection of urinary bladder cancer: a patient biopsy analysis. J. Biophotonics. 10, 1062–1073 (2017). https://doi.org/10.1002/jbio.201600162CrossRefPubMedGoogle Scholar
- 49.Tam, A.L., Lim, H.J., Wistuba, I.I., Tamrazi, A., Kuo, M.D., Ziv, E., Wong, S., Shih, A.J., Webster, R.J., Fischer, G.S., Nagrath, S., Davis, S.E., White, S.B., Ahrar, K.: Image-guided biopsy in the era of personalized cancer care: proceedings from the society of interventional radiology research consensus panel. J. Vasc. Interv. Radiol. 27, 8–19 (2016). https://doi.org/10.1016/j.jvir.2015.10.019CrossRefPubMedGoogle Scholar
- 50.Marshall, D., Laberge, J.M., Firetag, B., Miller, T., Kerlan, R.K.: The changing face of percutaneous image-guided biopsy: molecular profiling and genomic analysis in current practice. J. Vasc. Interv. Radiol. 24, 1094–1103 (2013). https://doi.org/10.1016/j.jvir.2013.04.027CrossRefPubMedGoogle Scholar
- 51.Francque, S.M., De Pauw, F.F., Van den Steen, G.H., Van Marck, E.A., Pelckmans, P.A., Michielsen, P.P.: Biopsy of focal liver lesions: guidelines, comparison of techniques and cost-analysis. Acta Gastroenterol. Belg. 66, 160–165 (2003)PubMedGoogle Scholar
- 52.Choi, S.H., Han, K.H., Yoon, J.H., Moon, H.J., Son, E.J., Youk, J.H., Kim, E.-K., Kwak, J.Y.: Factors affecting inadequate sampling of ultrasound-guided fine-needle aspiration biopsy of thyroid nodules. Clin. Endocrinol. (Oxf.). 74, 776–782 (2011). https://doi.org/10.1111/j.1365-2265.2011.04011.xCrossRefGoogle Scholar
- 53.Gomez-Macías, G.S., Garza-Guajardo, R., Segura-Luna, J., Barboza-Quintana, O.: Inadequate fine needle aspiration biopsy samples: pathologists versus other specialists. Cytojournal. 6, 9 (2009). https://doi.org/10.4103/1742-6413.52831CrossRefPubMedPubMedCentralGoogle Scholar
- 54.Lloyd, W.R., Wilson, R.H., Lee, S.Y., Chandra, M., McKenna, B., Simeone, D., Scheiman, J., Mycek, M.-A.: In vivo optical spectroscopy for improved detection of pancreatic adenocarcinoma: a feasibility study. Biomed. Opt. Express. 5, 9–15 (2013). https://doi.org/10.1364/BOE.5.000009CrossRefPubMedPubMedCentralGoogle Scholar
- 55.Harris, K., Rohrbach, D.J., Attwood, K., Qiu, J., Sunar, U.: Optical imaging of tissue obtained by transbronchial biopsies of peripheral lung lesions. J. Thorac. Dis. 9, 1386–1392 (2017). https://doi.org/10.21037/jtd.2017.03.113CrossRefPubMedPubMedCentralGoogle Scholar
- 56.Scolaro, L., Lorenser, D., Madore, W.-J., Kirk, R.W., Kramer, A.S., Yeoh, G.C., Godbout, N., Sampson, D.D., Boudoux, C., McLaughlin, R.A.: Molecular imaging needles: dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue. Biomed. Opt. Express. 6, 1767–1781 (2015). https://doi.org/10.1364/boe.6.001767CrossRefPubMedPubMedCentralGoogle Scholar
- 57.Haj-Hosseini, N., Richter, J.C.O., Milos, P., Hallbeck, M., Wårdell, K.: 5-ALA fluorescence and laser Doppler flowmetry for guidance in a stereotactic brain tumor biopsy. Biomed. Opt. Express. 9, 2284–2296 (2018). https://doi.org/10.1364/BOE.9.002284CrossRefPubMedPubMedCentralGoogle Scholar
- 58.Dremin, V., Potapova, E., Zherebtsov, E., Kozlov, I., Seryogina, E., Kandurova, K., Alekseyev, A., Piavchenko, G., Kuznetsov, S., Mamoshin, A., Dunaev, A.: Optical fine-needle aspiration biopsy in a rat model. In: Proc. SPIE 10877, p. 108770K. SPIE-Intl Soc Optical Eng (2019)Google Scholar
- 59.Kandurova, K., Potapova, E., Shupletsov, V., Kozlov, I., Seryogina, E., Dremin, V., Zherebtsov, E., Alekseyev, A., Mamoshin, A., Dunaev, A.: Optical fine-needle biopsy approach for intraoperative multimodal diagnostics in minimally invasive abdominal surgery. In: Proc. SPIE 11079, p. 110791C. SPIE-Intl Soc Optical Eng (2019)Google Scholar