Advertisement

Multimodal Optical Diagnostic in Minimally Invasive Surgery

  • Elena Potapova
  • Viktor Dremin
  • Evgeny Zherebtsov
  • Andrian Mamoshin
  • Andrey DunaevEmail author
Chapter
  • 82 Downloads

Abstract

The aspects of using optical instruments for minimally invasive interventions in abdominal surgery are considered. The results of clinical and preclinical trials of the application of the multimodal optical approaches in endoscopic instruments for the treatment and diagnosis of abdominal cancer are reviewed and discussed. A significant increase in image contrast, sensitivity, and specificity of cancer detection is noted. Novel fiber-optic system for versatile evaluation of the bile duct in patients with mechanical jaundice is described. It has been demonstrated that multimodal optical biopsy can be integrated with standard semi-automatic biopsy systems using fine-needle optical probes with immediate comparison of tumor and healthy tissue optical properties for determination of the tissue state. The applicability of this technique to the diagnosis of hepatocellular carcinoma has been demonstrated.

Notes

Acknowledgments

This study was supported by the Russian Science Foundation under project No 18-15-00201. E. Zherebtsov also acknowledges the support of the Academy of Finland (grant No 318281) and V. Dremin also acknowledges the support of the Russian Science Foundation under project No 19-79-00082.

References

  1. 1.
    Wickham, J.E.A.: The new surgery. Br. Med. J. (Clin. Res. Ed.). 295, 1581–1582 (1987).  https://doi.org/10.1136/bmj.295.6613.1581CrossRefGoogle Scholar
  2. 2.
    Siddaiah-Subramanya, M., Tiang, K., Nyandowe, M.: A new era of minimally invasive surgery: progress and development of major technical innovations in general surgery over the last decade. Surg. J. 03, e163–e166 (2017).  https://doi.org/10.1055/s-0037-1608651CrossRefGoogle Scholar
  3. 3.
    Pazouki, A.: Minimally invasive surgical sciences: a new scientific opportunity for all scientists. J. Minim. Invasive Surg. Sci. 1, 9–10 (2012).  https://doi.org/10.5812/jmiss.2976CrossRefGoogle Scholar
  4. 4.
    Breedveld, P., Stassen, H.G., Meijer, D.W., Jakimowicz, J.J.: Observation in laparoscopic surgery: overview of impeding effects and supporting aids. J. Laparoendosc. Adv. Surg. Tech. A. 10, 231–241 (2000).  https://doi.org/10.1089/lap.2000.10.231CrossRefPubMedGoogle Scholar
  5. 5.
    Dankelman, J., Wentink, M., Stassen, H.G.: Human reliability and training in minimally invasive surgery. Minim. Invasive Ther. Allied Technol. 12, 129–135 (2003).  https://doi.org/10.1080/13645700310007689CrossRefPubMedGoogle Scholar
  6. 6.
    Jones, D.B., Brewer, J.D., Soper, N.J.: The influence of three-dimensional video systems on laparoscopic task performance. Surg. Laparosc. Endosc. 6, 191–197 (1996)CrossRefGoogle Scholar
  7. 7.
    Lewin, J.S.: Future directions in minimally invasive intervention. Trans. Am. Clin. Climatol. Assoc. 128, 346–352 (2017)PubMedCentralGoogle Scholar
  8. 8.
    Wang, T.D., Van Dam, J.: Optical biopsy: a new frontier in endoscopic detection and diagnosis. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2, 744–753 (2004)Google Scholar
  9. 9.
    Kiesslich, R., Goetz, M., Hoffman, A., Galle, P.R.: New imaging techniques and opportunities in endoscopy. Nat. Rev. Gastroenterol. Hepatol. 8, 547–553 (2011).  https://doi.org/10.1038/nrgastro.2011.152CrossRefPubMedGoogle Scholar
  10. 10.
    Hoffman, A., Manner, H., Rey, J.W., Kiesslich, R.: A guide to multimodal endoscopy imaging for gastrointestinal malignancy-an early indicator. Nat. Rev. Gastroenterol. Hepatol. 14, 421–434 (2017).  https://doi.org/10.1038/nrgastro.2017.46CrossRefPubMedGoogle Scholar
  11. 11.
    Bedard, N., Pierce, M., El-Naggar, A., Anandasabapathy, S., Gillenwater, A., Richards-Kortum, R.: Emerging roles for multimodal optical imaging in early cancer detection: a global challenge. Technol. Cancer Res. Treat. 9, 211–217 (2010).  https://doi.org/10.1177/153303461000900210CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Georgakoudi, I., Jacobson, B.C., Van Dam, J., Backman, V., Wallace, M.B., Müller, M.G., Zhang, Q., Badizadegan, K., Sun, D., Thomas, G.A., Perelman, L.T., Feld, M.S.: Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus. Gastroenterology. 120, 1620–1629 (2001).  https://doi.org/10.1053/gast.2001.24842CrossRefPubMedGoogle Scholar
  13. 13.
    Kara, M.A., Bergman, J.J.: Autofluorescence imaging and narrow-band imaging for the detection of early neoplasia in patients with Barrett’s esophagus. Endoscopy. 38, 627–631 (2006).  https://doi.org/10.1055/s-2006-925385CrossRefPubMedGoogle Scholar
  14. 14.
    Curvers, W.L., Herrero, L.A., Wallace, M.B., Wong Kee Song, L.M., Ragunath, K., Wolfsen, H.C., Prasad, G.A., Wang, K.K., Subramanian, V., Weusten, B.L.A.M., Ten Kate, F.J., Bergman, J.J.G.H.M.: Endoscopic tri-modal imaging is more effective than standard endoscopy in identifying early-stage neoplasia in Barrett’s esophagus. Gastroenterology. 139, 1106–1114.e1 (2010).  https://doi.org/10.1053/j.gastro.2010.06.045CrossRefPubMedGoogle Scholar
  15. 15.
    von Holstein, C.S., Nilsson, A.M., Andersson-Engels, S., Willén, R., Walther, B., Svanberg, K.: Detection of adenocarcinoma in Barrett’s oesophagus by means of laser induced fluorescence. Gut. 39, 711–716 (1996).  https://doi.org/10.1136/gut.39.5.711CrossRefGoogle Scholar
  16. 16.
    Wang, K.K., Okoro, N., Prasad, G., WongKeeSong, M., Buttar, N.S., Tian, J.: Endoscopic evaluation and advanced imaging of Barrett’s esophagus. Gastrointest. Endosc. Clin. N. Am. 21, 39–51 (2011).  https://doi.org/10.1016/j.giec.2010.09.013CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kato, M., Kaise, M., Yonezawa, J., Goda, K., Toyoizumi, H., Yoshimura, N., Yoshida, Y., Kawamura, M., Tajiri, H.: Trimodal imaging endoscopy may improve diagnostic accuracy of early gastric neoplasia: a feasibility study. Gastrointest. Endosc. 70, 899–906 (2009).  https://doi.org/10.1016/j.gie.2009.03.1171CrossRefPubMedGoogle Scholar
  18. 18.
    van den Broek, F.J.C., Fockens, P., Van Eeden, S., Kara, M.A., Hardwick, J.C.H., Reitsma, J.B., Dekker, E.: Clinical evaluation of endoscopic trimodal imaging for the detection and differentiation of colonic polyps. Clin. Gastroenterol. Hepatol. 7, 288–295 (2009).  https://doi.org/10.1016/j.cgh.2008.10.025CrossRefPubMedGoogle Scholar
  19. 19.
    Joshi, B.P., Pant, A., Duan, X., Prabhu, A., Wamsteker, E.J., Kwon, R.S., Elta, G.H., Owens, S.R., Appelman, H.D., Wang, T.D., Turgeon, D.K.: Multimodal video colonoscope for targeted wide-field detection of nonpolypoid colorectal neoplasia. Gastroenterology. 150, 1084–1086 (2016).  https://doi.org/10.1053/j.gastro.2016.02.075CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kim, Y.-I., Jeong, S., Jung, K.O., Song, M.G., Lee, C.-H., Chung, S.-J., Park, J.Y., Cha, M.G., Lee, S.G., Jun, B.-H., Lee, Y.-S., Hwang, D.W., Youn, H., Kang, K.W., Lee, Y.-S., Jeong, D.H., Lee, D.S.: Simultaneous detection of EGFR and VEGF in colorectal cancer using fluorescence-Raman endoscopy. Sci. Rep. 7, 1035 (2017).  https://doi.org/10.1038/s41598-017-01020-yCrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Jeong, S., Kim, Y.I., Kang, H., Kim, G., Cha, M.G., Chang, H., Jung, K.O., Kim, Y.H., Jun, B.H., Hwang, D.W., Lee, Y.S., Youn, H., Lee, Y.S., Kang, K.W., Lee, D.S., Jeong, D.H.: Fluorescence-Raman dual modal endoscopic system for multiplexed molecular diagnostics. Sci. Rep. 5, 9455 (2015).  https://doi.org/10.1038/srep09455CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Miller, S.J., Lee, C.M., Joshi, B.P., Gaustad, A., Seibel, E.J., Wang, T.D.: Targeted detection of murine colonic dysplasia in vivo with flexible multispectral scanning fiber endoscopy. J. Biomed. Opt. 17, 021103 (2012).  https://doi.org/10.1117/1.JBO.17.2.021103CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tumlinson, A.R., Hariri, L.P., Utzinger, U., Barton, J.K.: Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement. Appl. Opt. 43, 113–121 (2004).  https://doi.org/10.1364/AO.43.000113CrossRefPubMedGoogle Scholar
  24. 24.
    Winkler, A.M., Rice, P.F.S., Weichsel, J., Watson, J.M., Backer, M.V., Backer, J.M., Barton, J.K.: In vivo, dual-modality OCT/LIF imaging using a novel VEGF receptor-targeted NIR fluorescent probe in the AOM-treated mouse model. Mol. Imaging Biol. 13, 1173–1182 (2011).  https://doi.org/10.1007/s11307-010-0450-6CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Carbary-Ganz, J.L., Welge, W.A., Barton, J.K., Utzinger, U.: In vivo molecular imaging of colorectal cancer using quantum dots targeted to vascular endothelial growth factor receptor 2 and optical coherence tomography/laser-induced fluorescence dual-modality imaging. J. Biomed. Opt. 20, 096015 (2015).  https://doi.org/10.1117/1.JBO.20.9.096015CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Li, Y., Jing, J., Yu, J., Zhang, B., Huo, T., Yang, Q., Chen, Z.: Multimodality endoscopic optical coherence tomography and fluorescence imaging technology for visualization of layered architecture and subsurface microvasculature. Opt. Lett. 43, 2074–2077 (2018).  https://doi.org/10.1364/ol.43.002074CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Li, Y., Zhu, Z., Chen, J.J., Jing, J.C., Sun, C.-H., Kim, S., Chung, P.-S., Chen, Z.: Multimodal endoscopy for colorectal cancer detection by optical coherence tomography and near-infrared fluorescence imaging. Biomed. Opt. Express. 10, 2419–2429 (2019).  https://doi.org/10.1364/boe.10.002419CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Charanya, T., York, T., Bloch, S., Sudlow, G., Liang, K., Garcia, M., Akers, W.J., Rubin, D., Gruev, V., Achilefu, S.: Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer. J. Biomed. Opt. 19, 126002 (2014).  https://doi.org/10.1117/1.jbo.19.12.126002CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Skubleny, D., Dang, J.T., Skulsky, S., Switzer, N., Tian, C., Shi, X., de Gara, C., Birch, D.W., Karmali, S.: Diagnostic evaluation of sentinel lymph node biopsy using indocyanine green and infrared or fluorescent imaging in gastric cancer: a systematic review and meta-analysis. Surg. Endosc. 32, 2620–2631 (2018).  https://doi.org/10.1007/s00464-018-6100-9CrossRefPubMedGoogle Scholar
  30. 30.
    Zheng, C., Lau, L.W., Cha, J.: Dual-display laparoscopic laser speckle contrast imaging for real-time surgical assistance. Biomed. Opt. Express. 9, 5962–5981 (2018).  https://doi.org/10.1364/boe.9.005962CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Heeman, W., Dijkstra, K., Hoff, C., Koopal, S., Pierie, J.-P., Bouma, H., Boerma, E.C.: Application of laser speckle contrast imaging in laparoscopic surgery. Biomed. Opt. Express. 10, 2010–2019 (2019).  https://doi.org/10.1364/boe.10.002010CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hariri, L.P., Bonnema, G.T., Schmidt, K., Winkler, A.M., Korde, V., Hatch, K.D., Davis, J.R., Brewer, M.A., Barton, J.K.: Laparoscopic optical coherence tomography imaging of human ovarian cancer. Gynecol. Oncol. 114, 188–194 (2009).  https://doi.org/10.1016/j.ygyno.2009.05.014CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zuzak, K.J., Naik, S.C., Alexandrakis, G., Hawkins, D., Behbehani, K., Livingston, E.H.: Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery. Anal. Chem. 79, 4709–4715 (2007).  https://doi.org/10.1021/ac070367nCrossRefPubMedGoogle Scholar
  34. 34.
    Baltussen, E.J.M., Kok, E.N.D., Brouwer de Koning, S.G., Sanders, J., Aalbers, A.G.J., Kok, N.F.M., Beets, G.L., Flohil, C.C., Bruin, S.C., Kuhlmann, K.F.D., Sterenborg, H.J.C.M., Ruers, T.J.M.: Hyperspectral imaging for tissue classification, a way toward smart laparoscopic colorectal surgery. J. Biomed. Opt. 24, 016002 (2019).  https://doi.org/10.1117/1.jbo.24.1.016002CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kikuchi, H., Kamiya, K., Hiramatsu, Y., Miyazaki, S., Yamamoto, M., Ohta, M., Baba, S., Konno, H.: Laparoscopic narrow-band imaging for the diagnosis of peritoneal metastasis in gastric cancer. Ann. Surg. Oncol. 21, 3954–3962 (2014).  https://doi.org/10.1245/s10434-014-3781-8CrossRefPubMedGoogle Scholar
  36. 36.
    Schnelldorfer, T., Jenkins, R.L., Birkett, D.H., Wright, V.J., Price, L.L., Georgakoudi, I.: Laparoscopic narrow band imaging for detection of occult cancer metastases: a randomized feasibility trial. Surg. Endosc. 30, 1656–1661 (2016).  https://doi.org/10.1007/s00464-015-4401-9CrossRefPubMedGoogle Scholar
  37. 37.
    Kandurova, K., Dremin, V., Zherebtsov, E., Potapova, E., Alyanov, A., Mamoshin, A., Ivanov, Y., Borsukov, A., Dunaev, A.: Fiber-optic system for intraoperative study of abdominal organs during minimally invasive surgical interventions. Appl. Sci. 9, 217 (2019).  https://doi.org/10.3390/app9020217CrossRefGoogle Scholar
  38. 38.
    Becker, G.J.: 2000 RSNA annual oration in diagnostic radiology: the future of interventional radiology. Radiology. 220, 281–292 (2001).  https://doi.org/10.1148/radiology.220.2.r01au39281CrossRefPubMedGoogle Scholar
  39. 39.
    Cope, C.: Percutaneous nonvascular abdominal interventions: reflections on the past and ideas for the future. J. Vasc. Interv. Radiol. 14, 861–864 (2003).  https://doi.org/10.1097/01.RVI.0000064854.87207.8CrossRefPubMedGoogle Scholar
  40. 40.
    Lin, Q., Yang, R., Cai, K., Guan, P., Xiao, W., Wu, X.: Strategy for accurate liver intervention by an optical tracking system. Biomed. Opt. Express. 6, 3287–3302 (2015).  https://doi.org/10.1364/boe.6.003287CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Watkinson, A.F., Adam, A. (eds.): Interventional Radiology: A Practical Guide. Radcliffe Medical Press, Oxford and New York (1996)Google Scholar
  42. 42.
    Bartolomé, F., Abramov, A.Y.: Measurement of mitochondrial NADH and FAD autofluorescence in live cells. Methods Mol. Biol. 1264, 263–270 (2015).  https://doi.org/10.1007/978-1-4939-2257-4_23CrossRefPubMedGoogle Scholar
  43. 43.
    Kandurova, K., Dremin, V., Zherebtsov, E., Potapova, E., Filina, M., Dunaev, A., Mamoshin, A., Alyanov, A., Muradyan, V.: Optical diagnostics of bile duct tissues state with tumor compression. In: Proc. SPIE 11065, p. 1106508. SPIE-Intl Soc Optical Eng (2019)Google Scholar
  44. 44.
    Anidjar, M., Ettori, D., Cussenot, O., Meria, P., Desgrandchamps, F., Cortesse, A., Teillac, P., Le Duc, A., Avrillier, S.: Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength. J. Urol. 156, 1590–1596 (1996)CrossRefGoogle Scholar
  45. 45.
    Bogomolov, A., Belikova, V., Zabarylo, U.J., Bibikova, O., Usenov, I., Sakharova, T., Krause, H., Minet, O., Feliksberger, E., Artyushenko, V.: Synergy effect of combining fluorescence and mid infrared fiber spectroscopy for kidney tumor diagnostics. Sensors. 17, E2548 (2017).  https://doi.org/10.3390/s17112548CrossRefPubMedGoogle Scholar
  46. 46.
    Koenig, F., McGovern, F.J., Althausen, A.F., Deutsch, T.F., Schomacker, K.T.: Laser induced autofluorescence diagnosis of bladder cancer. J. Urol. 156, 1597–1601 (1996)CrossRefGoogle Scholar
  47. 47.
    Mayinger, B., Jordan, M., Horner, P., Gerlach, C., Muehldorfer, S., Bittorf, B.R., Matzel, K.E., Hohenberger, W., Hahn, E.G., Guenther, K.: Endoscopic light-induced autofluorescence spectroscopy for the diagnosis of colorectal cancer and adenoma. J. Photochem. Photobiol. B. 70, 13–20 (2003)CrossRefGoogle Scholar
  48. 48.
    Palmer, S., Litvinova, K., Dunaev, A., Yubo, J., McGloin, D., Nabi, G.: Optical redox ratio and endogenous porphyrins in the detection of urinary bladder cancer: a patient biopsy analysis. J. Biophotonics. 10, 1062–1073 (2017).  https://doi.org/10.1002/jbio.201600162CrossRefPubMedGoogle Scholar
  49. 49.
    Tam, A.L., Lim, H.J., Wistuba, I.I., Tamrazi, A., Kuo, M.D., Ziv, E., Wong, S., Shih, A.J., Webster, R.J., Fischer, G.S., Nagrath, S., Davis, S.E., White, S.B., Ahrar, K.: Image-guided biopsy in the era of personalized cancer care: proceedings from the society of interventional radiology research consensus panel. J. Vasc. Interv. Radiol. 27, 8–19 (2016).  https://doi.org/10.1016/j.jvir.2015.10.019CrossRefPubMedGoogle Scholar
  50. 50.
    Marshall, D., Laberge, J.M., Firetag, B., Miller, T., Kerlan, R.K.: The changing face of percutaneous image-guided biopsy: molecular profiling and genomic analysis in current practice. J. Vasc. Interv. Radiol. 24, 1094–1103 (2013).  https://doi.org/10.1016/j.jvir.2013.04.027CrossRefPubMedGoogle Scholar
  51. 51.
    Francque, S.M., De Pauw, F.F., Van den Steen, G.H., Van Marck, E.A., Pelckmans, P.A., Michielsen, P.P.: Biopsy of focal liver lesions: guidelines, comparison of techniques and cost-analysis. Acta Gastroenterol. Belg. 66, 160–165 (2003)PubMedGoogle Scholar
  52. 52.
    Choi, S.H., Han, K.H., Yoon, J.H., Moon, H.J., Son, E.J., Youk, J.H., Kim, E.-K., Kwak, J.Y.: Factors affecting inadequate sampling of ultrasound-guided fine-needle aspiration biopsy of thyroid nodules. Clin. Endocrinol. (Oxf.). 74, 776–782 (2011).  https://doi.org/10.1111/j.1365-2265.2011.04011.xCrossRefGoogle Scholar
  53. 53.
    Gomez-Macías, G.S., Garza-Guajardo, R., Segura-Luna, J., Barboza-Quintana, O.: Inadequate fine needle aspiration biopsy samples: pathologists versus other specialists. Cytojournal. 6, 9 (2009).  https://doi.org/10.4103/1742-6413.52831CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lloyd, W.R., Wilson, R.H., Lee, S.Y., Chandra, M., McKenna, B., Simeone, D., Scheiman, J., Mycek, M.-A.: In vivo optical spectroscopy for improved detection of pancreatic adenocarcinoma: a feasibility study. Biomed. Opt. Express. 5, 9–15 (2013).  https://doi.org/10.1364/BOE.5.000009CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Harris, K., Rohrbach, D.J., Attwood, K., Qiu, J., Sunar, U.: Optical imaging of tissue obtained by transbronchial biopsies of peripheral lung lesions. J. Thorac. Dis. 9, 1386–1392 (2017).  https://doi.org/10.21037/jtd.2017.03.113CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Scolaro, L., Lorenser, D., Madore, W.-J., Kirk, R.W., Kramer, A.S., Yeoh, G.C., Godbout, N., Sampson, D.D., Boudoux, C., McLaughlin, R.A.: Molecular imaging needles: dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue. Biomed. Opt. Express. 6, 1767–1781 (2015).  https://doi.org/10.1364/boe.6.001767CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Haj-Hosseini, N., Richter, J.C.O., Milos, P., Hallbeck, M., Wårdell, K.: 5-ALA fluorescence and laser Doppler flowmetry for guidance in a stereotactic brain tumor biopsy. Biomed. Opt. Express. 9, 2284–2296 (2018).  https://doi.org/10.1364/BOE.9.002284CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Dremin, V., Potapova, E., Zherebtsov, E., Kozlov, I., Seryogina, E., Kandurova, K., Alekseyev, A., Piavchenko, G., Kuznetsov, S., Mamoshin, A., Dunaev, A.: Optical fine-needle aspiration biopsy in a rat model. In: Proc. SPIE 10877, p. 108770K. SPIE-Intl Soc Optical Eng (2019)Google Scholar
  59. 59.
    Kandurova, K., Potapova, E., Shupletsov, V., Kozlov, I., Seryogina, E., Dremin, V., Zherebtsov, E., Alekseyev, A., Mamoshin, A., Dunaev, A.: Optical fine-needle biopsy approach for intraoperative multimodal diagnostics in minimally invasive abdominal surgery. In: Proc. SPIE 11079, p. 110791C. SPIE-Intl Soc Optical Eng (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Elena Potapova
    • 1
  • Viktor Dremin
    • 1
    • 2
  • Evgeny Zherebtsov
    • 1
    • 2
  • Andrian Mamoshin
    • 1
    • 3
  • Andrey Dunaev
    • 1
    Email author
  1. 1.Orel State UniversityOrelRussian Federation
  2. 2.University of OuluOuluFinland
  3. 3.Orel Regional Clinical HospitalOrelRussian Federation

Personalised recommendations