Skip to main content

Coherent Resolutions of Nondeterminism

  • Conference paper
  • First Online:
Computer Performance Engineering (EPEW 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12039))

Included in the following conference series:

Abstract

We study the impact that different ways of resolving nondeterminism within probabilistic automata have on the properties of probabilistic behavioral equivalences. Firstly, we provide a uniform definition of structure-preserving and structure-modifying resolutions of nondeterminism, respectively generated by different families of schedulers. Secondly, we exhibit a number of anomalies arising from the excessive power of the various families of schedulers, which affect the discriminating power, the compositionality, and the backward compatibility of probabilistic trace equivalence. Thirdly, we propose to remove those anomalies by enforcing coherency within resolutions of nondeterminism. This ensures that a scheduler cannot select different continuations in equivalent states of an automaton, so that also the states to which they correspond in any resolution of the automaton have equivalent continuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baier, C., Katoen, J.-P., Hermanns, H., Wolf, V.: Comparative branching-time semantics for Markov chains. Inf. Comput. 200, 149–214 (2005)

    Article  MathSciNet  Google Scholar 

  2. Bernardo, M.: Genesis and evolution of ULTraS: metamodel, metaequivalences, metaresults. In: Boreale, M., Corradini, F., Loreti, M., Pugliese, R. (eds.) Models, Languages, and Tools for Concurrent and Distributed Programming. LNCS, vol. 11665, pp. 92–111. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21485-2_7

    Chapter  Google Scholar 

  3. Bernardo, M., De Nicola, R., Loreti, M.: Revisiting trace and testing equivalences for nondeterministic and probabilistic processes. Logical Methods Comput. Sci. 10(1:16), 1–42 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Bernardo, M., De Nicola, R., Loreti, M.: Relating strong behavioral equivalences for processes with nondeterminism and probabilities. Theor. Comput. Sci. 546, 63–92 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bernardo, M., Sangiorgi, D., Vignudelli, V.: On the discriminating power of testing equivalences for reactive probabilistic systems: results and open problems. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 281–296. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10696-0_23

    Chapter  MATH  Google Scholar 

  6. Bonchi, F., Sokolova, A., Vignudelli, V.: The theory of traces for systems with nondeterminism and probability. In: Proceedings of the 34th ACM/IEEE Symposium on Logic in Computer Science (LICS 2019), no. (19:62), pp. 1–14. IEEE-CS Press (2019)

    Google Scholar 

  7. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes. J. ACM 31, 560–599 (1984)

    Article  MathSciNet  Google Scholar 

  8. De Nicola, R.: Extensional equivalences for transition systems. Acta Informatica 24, 211–237 (1987)

    Article  MathSciNet  Google Scholar 

  9. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput. Sci. 34, 83–133 (1984)

    Article  MathSciNet  Google Scholar 

  10. Deng, Y., van Glabbeek, R., Morgan, C., Zhang, C.: Scalar outcomes suffice for finitary probabilistic testing. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 363–378. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6_25

    Chapter  Google Scholar 

  11. Derman, C.: Finite State Markovian Decision Processes. Academic Press, Cambridge (1970)

    MATH  Google Scholar 

  12. Georgievska, S., Andova, S.: Probabilistic may/must testing: retaining probabilities by restricted schedulers. Formal Aspects Comput. 24, 727–748 (2012)

    Article  MathSciNet  Google Scholar 

  13. van Glabbeek, R.J.: The linear time - branching time spectrum I. In: Handbook of Process Algebra, pp. 3–99. Elsevier (2001)

    Google Scholar 

  14. Huynh, D.T., Tian, L.: On some equivalence relations for probabilistic processes. Fundamenta Informaticae 17, 211–234 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Jonsson, B., Ho-Stuart, C., Yi, W.: Testing and refinement for nondeterministic and probabilistic processes. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994. LNCS, vol. 863, pp. 418–430. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58468-4_176

    Chapter  Google Scholar 

  16. Jonsson, B., Yi, W.: Compositional testing preorders for probabilistic processes. In: Proceedings of the 10th IEEE Symposium on Logic in Computer Science (LICS 1995), pp. 431–441. IEEE-CS Press (1995)

    Google Scholar 

  17. Jou, C.-C., Smolka, S.A.: Equivalences, congruences, and complete axiomatizations for probabilistic processes. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 367–383. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0039071

    Chapter  Google Scholar 

  18. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19, 371–384 (1976)

    Article  MathSciNet  Google Scholar 

  19. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Van Nostrand, New York (1960)

    MATH  Google Scholar 

  20. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94, 1–28 (1991)

    Article  MathSciNet  Google Scholar 

  21. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River (1989)

    MATH  Google Scholar 

  22. Segala, R.: Modeling and verification of randomized distributed real-time systems. Ph.D. thesis (1995)

    Google Scholar 

  23. Segala, R.: A compositional trace-based semantics for probabilistic automata. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 234–248. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60218-6_17

    Chapter  Google Scholar 

  24. Segala, R.: Testing probabilistic automata. In: Montanari, U., Sassone, V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 299–314. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61604-7_62

    Chapter  Google Scholar 

  25. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-540-48654-1_35

    Chapter  Google Scholar 

  26. Yi, W., Larsen, K.G.: Testing probabilistic and nondeterministic processes. In: Proceedings of the 12th International Symposium on Protocol Specification, Testing and Verification (PSTV 1992), pp. 47–61. North-Holland (1992)

    Google Scholar 

Download references

Acknowledgement

We would like to thank Valeria Vignudelli for pointing out the property violation illustrated in Fig. 4 and Rob van Glabbeek for the valuable discussions on interpolating and randomized schedulers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bernardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bernardo, M. (2020). Coherent Resolutions of Nondeterminism. In: Gribaudo, M., Iacono, M., Phung-Duc, T., Razumchik, R. (eds) Computer Performance Engineering. EPEW 2019. Lecture Notes in Computer Science(), vol 12039. Springer, Cham. https://doi.org/10.1007/978-3-030-44411-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44411-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44410-5

  • Online ISBN: 978-3-030-44411-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics