Skip to main content

Environmental Risk Indicators for Weed Management: A Case Study of Ecotoxicity Assessment Using Fuzzy Logic

  • Chapter
  • First Online:
Decision Support Systems for Weed Management

Abstract

Herbicide use is a key element in the current intensification of agricultural production systems that usually leads to increases in crop yield. However, development of theoretical frameworks and tools is necessary to allow for environmental assessment of herbicides. In this chapter, we present a series of elements that should be considered for designing these types of tools. In addition, we describe the structure of RIPEST, a simple model based on fuzzy logic that evaluates the ecotoxicological hazard of pesticides (herbicides, fungicides and insecticides). RIPEST was run using a time series of pesticide use and actual soybean yields from Argentina. Results from this cropping system assessment allows for discussion of the ecotoxicological risk of herbicide use, in particular, and pesticides, in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
EUR 29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 186.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 186.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Altenburger R, Nendza M, Schüürmann G (2003) Mixture toxicity and its modeling by quantitative structure-activity relationships. Environ Toxicol Chem 22(8):1900–1915

    Article  CAS  PubMed  Google Scholar 

  • Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto J-C, García-Río L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123(4):247–260

    Article  Google Scholar 

  • Beketov MA, Liess M (2012) Ecotoxicology and macroecology – time for integration. Environ Pollut 162:247–254. https://doi.org/10.1016/j.envpol.2011.11.011

    Article  CAS  PubMed  Google Scholar 

  • Benbrook CM (2012) Impacts of genetically engineered crops on pesticide use in the US—the first sixteen years. Environ Sci Eur 24(1):24

    Article  Google Scholar 

  • Bockstaller C, Guichard L, Makowski D, Aveline A, Girardin P, Plantureux S (2008) Agri-environmental indicators to assess cropping and farming systems. a review. Agron Sustain Dev 28(1):139–149

    Article  Google Scholar 

  • Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28(4):230–238. https://doi.org/10.1016/j.tree.2012.10.012

    Article  PubMed  Google Scholar 

  • Bradbury SP, Feijtel TC, Leeuwen CJV (2004) Peer reviewed: meeting the scientific needs of ecological risk assessment in a regulatory context. Environ Sci Technol 38(23):463A–470A

    Article  CAS  PubMed  Google Scholar 

  • CASAFE (2012) Cámara Argentina de Sanidad Agripecuaria y Fertilizantes. Evolución del mercado de herbicidas en Argentina (online). www.casafe.org. www.casafe.org

  • Cornelissen AMG, van der Berg J, Koops WJ, Grossman M, Udo HMJ (2001) Assessment of the contribution of sustainability indicators to sustainable development: a novel approach using fuzzy set theory. Agric Ecosyst Environ 86:173–185

    Article  Google Scholar 

  • Faust M, Altenburger R, Backhaus T, Bödeker W, Scholze M, Grimme L (2000) Predictive assessment of the aquatic toxicity of multiple chemical mixtures. J Environ Qual 29(4):1063–1068

    Article  CAS  Google Scholar 

  • Ferraro DO (2009) Fuzzy knowledge-based model for soil condition assessment in Argentinean cropping systems. Environ Model Softw 24(3):359–370

    Article  Google Scholar 

  • Ferraro DO, Benzi P (2015) A long-term sustainability assessment of an Argentinian agricultural system based on emergy synthesis. Ecol Model 306:121–129. https://doi.org/10.1016/j.ecolmodel.2014.06.016

    Article  Google Scholar 

  • Fleming G, Merwe M, McFerren G (2007) Fuzzy expert systems and GIS for cholera health risk prediction in southern Africa. Environ Model Softw 22(4):442

    Article  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337

    Article  CAS  PubMed  Google Scholar 

  • Forbes VE, Hommen U, Thorbek P, Heimbach F, Van den Brink PJ, Wogram J, Thulke HH, Grimm V (2009) Ecological models in support of regulatory risk assessments of pesticides: developing a strategy for the future. Integr Environ Assess Manag 5(1):167–172

    Article  CAS  PubMed  Google Scholar 

  • Green JM (2014) Current state of herbicides in herbicide-resistant crops. Pest Manag Sci 70(9):1351–1357. https://doi.org/10.1002/ps.3727

    Article  CAS  PubMed  Google Scholar 

  • Hayes KR, Gregg PC, Gupta VVSR, Jessop R, Lonsdale WM, Sindel B, Stanley J, Williams CK (2004) Identifying hazards in complex ecological systems. Part 3: Hierarchical Holographic Model for herbicide tolerant oilseed rape. Environ Biosaf Res 3(2):109–128. https://doi.org/10.1051/ebr:2004012

    Article  Google Scholar 

  • Hobbs JE (2003) Incentives for the Adoption of Good Agricultural Practices (GAPs). Food and Agriculture Organization, Rome

    Google Scholar 

  • Iliadis LS (2005) A decision support system applying an integrated fuzzy model for long-term forest fire risk estimation. Environ Model Softw 20(5):613

    Article  Google Scholar 

  • Imfeld G, Vuilleumier S (2012) Measuring the effects of pesticides on bacterial communities in soil: a critical review. Eur J Soil Biol 49:22–30

    Article  CAS  Google Scholar 

  • Jones R (2010) A risk management approach to climate change adaptation. In: RAC N, Wratt DS, Bornman JF, Jones K (eds) Climate change adaptation in New Zealand: future scenarios and some sectoral perspectives. New Zealand Climate Change Centre, New Zealand, pp 10–25

    Google Scholar 

  • Kaplan S, Garrick BJ (1981) On the quantitative definition of risk. Risk Anal 1(1):11–27

    Article  Google Scholar 

  • Kim K-H, Kabir E, Jahan SA (2017) Exposure to pesticides and the associated human health effects. Sci Total Environ 575:525–535

    Article  CAS  PubMed  Google Scholar 

  • Kramer VJ, Etterson MA, Hecker M, Murphy CA, Roesijadi G, Spade DJ, Spromberg JA, Wang M, Ankley GT (2011) Adverse outcome pathways and ecological risk assessment: Bridging to population-level effects. Environ Toxicol Chem 30(1):64–76. https://doi.org/10.1002/etc.375

    Article  CAS  PubMed  Google Scholar 

  • Lahr J, Kooistra L (2010) Environmental risk mapping of pollutants: state of the art and communication aspects. Sci Total Environ 408:3899–3907

    Google Scholar 

  • Le QB, Park SJ, Vlek PLG, Cremers AB (2008) Land-Use Dynamic Simulator (LUDAS): A multi-agent system model for simulating spatio-temporal dynamics of coupled human–landscape system. I. Structure and theoretical specification. Eco Informs 3:135–153

    Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73(6):1943–1967

    Article  Google Scholar 

  • Lewis KA, Tzilivakis J, Warner DJ, Green A (2016) An international database for pesticide risk assessments and management. Hum Ecol Risk Assess Int J 22(4):1050–1064. https://doi.org/10.1080/10807039.2015.1133242

    Article  CAS  Google Scholar 

  • Manuel-Navarrete D, Gallopín G, Blanco M, Díaz-Zorita M, Ferraro D, Herzer H, Laterra P, Murmis M, Podestá G, Rabinovich J, Satorre E, Torres F, Viglizzo E (2009) Multi-causal and integrated assessment of sustainability: the case of agriculturization in the Argentine Pampas. Environ Dev Sustain 11:612–638

    Article  Google Scholar 

  • Marchini A (2011) Modelling ecological processes with fuzzy logic approaches. In: Modelling complex ecological dynamics. Springer, Berlin, Heidelberg, pp 133–145

    Chapter  Google Scholar 

  • Metternicht G, Gonzalez S (2005) FUERO: foundations of a fuzzy exploratory model for soil erosion hazard prediction. Environ Model Softw 20(6):715

    Article  Google Scholar 

  • MinAgri (2018) Estimaciones agrícolas (Series of agricultural statistics by crop, year, province and department of the Argentine Republic)

    Google Scholar 

  • Newman M (2010) Acute and cronic lethal effects to individuals. In: Newman MC (ed) Fundamentals of ecotoxicology. Ann Arbor Press, Chelsea, MI, pp 247–272

    Google Scholar 

  • Nienstedt KM, Brock TC, van Wensem J, Montforts M, Hart A, Aagaard A, Alix A, Boesten J, Bopp SK, Brown C (2012) Development of a framework based on an ecosystem services approach for deriving specific protection goals for environmental risk assessment of pesticides. Sci Total Environ 415:31–38

    Article  CAS  PubMed  Google Scholar 

  • Odum HT (1994) Ecological and general systems: an introduction to systems ecology. University Press of Colorado, Louisville, CO

    Google Scholar 

  • Pretty J (2008) Agricultural sustainability: concepts, principles and evidence. Philos Trans R Soc Lond B Biol Sci 363(1491):447–465. https://doi.org/10.1098/rstb.2007.2163

    Article  PubMed  Google Scholar 

  • Prosser RS, Anderson JC, Hanson ML, Solomon KR, Sibley PK (2016) Indirect effects of herbicides on biota in terrestrial edge-of-field habitats: a critical review of the literature. Agric Ecosyst Environ 232:59–72. https://doi.org/10.1016/j.agee.2016.07.009

    Article  CAS  Google Scholar 

  • Qaim M, Traxler G (2005) Roundup Ready soybeans in Argentina: farm level and aggregate welfare effects. Agric Econ 32(1):73–86

    Article  Google Scholar 

  • Renwick AG (2002) Pesticide residue analysis and its relationship to hazard characterisation (ADI/ARfD) and intake estimations (NEDI/NESTI). Pest Manag Sci 58(10):1073–1082. https://doi.org/10.1002/ps.544

    Article  CAS  PubMed  Google Scholar 

  • Reynolds K (1999) NetWeaver for EMDS version 2.0 user guide: a knowledge base development system. US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR

    Book  Google Scholar 

  • Rose DG (1998) Environmental toxicology: current developments. Gordon and Breach Science Publishers, Amsterdam, The Netherlands

    Book  Google Scholar 

  • Registro nacional de terpeutica vegetal (National registry of vegetal therapeutics) (2018). http://www.senasa.gob.ar/sites/default/files/ARBOL_SENASA/INFORMACION/PROD%20VETE%20FITO%20Y%20FERTILI/PROD%20FITO%20Y%20FERTILIZANTES/REG%20NAC%20TERAPEUTICA%20VEGETAL/PRODUCTOS%20INSCRIPTOS/formulados_web_ago_2018_2.xls. Accessed Aug 2018

  • Schmolke A, Thorbek P, DeAngelis DL, Grimm V (2010) Ecological models supporting environmental decision making: a strategy for the future. Trends Ecol Evol 25(8):479–486

    Article  PubMed  Google Scholar 

  • Soriano A, León RJC, Sala OE, Lavado RS, Deregibus VA, Cahuépé MA, Scaglia OA, Velázquez CA, Lemcoff JH (1991) Río de la Plata grasslands. In: Coupland RT (ed) Ecosystems of the world 8A. Natural grasslands. Introduction and western hemisphere, vol 19. Elsevier, New York, pp 367–407

    Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15(1):116

    Article  Google Scholar 

  • Tan RR (2005) Application of symmetric fuzzy linear programming in life cycle assessment. Environ Model Softw 20(10):1343

    Article  Google Scholar 

  • Thorbek P, Forbes VE, Heimbach F, Hommen U, Thulke H-H, van den Brink P, Wogram J, Grimm V (2009) Ecological models for regulatory risk assessments of pesticides: developing a strategy for the future. CRC press, Boca Raton, FL

    Book  Google Scholar 

  • Westwood JH, Charudattan R, Duke SO, Fennimore SA, Marrone P, Slaughter DC, Swanton C, Zollinger R (2018) Weed management in 2050: perspectives on the future of weed science. Weed Sci 66(3):275–285. https://doi.org/10.1017/wsc.2017.78

    Article  Google Scholar 

  • WHO (2002) The world health report 2002: reducing risks, promoting healthy life. World Health Organization, Geneva, Switzerland

    Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338

    Article  Google Scholar 

  • Zhang H, Song J, Su C, He M (2013) Human attitudes in environmental management: Fuzzy Cognitive Maps and policy option simulations analysis for a coal-mine ecosystem in China. J Environ Manag 115:227–234. https://doi.org/10.1016/j.jenvman.2012.09.032

    Article  Google Scholar 

  • Zimmermann HJ (1996) Fuzzy set theory and its applications. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego O. Ferraro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferraro, D.O., Duarte Vera, A.C., Pessah, S., Ghersa, F. (2020). Environmental Risk Indicators for Weed Management: A Case Study of Ecotoxicity Assessment Using Fuzzy Logic. In: Chantre, G., González-Andújar, J. (eds) Decision Support Systems for Weed Management. Springer, Cham. https://doi.org/10.1007/978-3-030-44402-0_9

Download citation

Publish with us

Policies and ethics