Skip to main content

Significance of Bone–Implant Contact in Short Implants and Clinical Impact

  • Chapter
  • First Online:
Short Implants

Abstract

The introduction of dental implants has resulted in many new developments in modern dentistry. The long-term clinical success of dental implants among other factors depends on understanding the interaction between bones and implants under various conditions and locations [1–3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balshi TJ, Wolfinger GJ, Slauch RW, Balshi SF. A retrospective analysis of 800 Branemark system implants following the all-on-four protocol. J Prosthodont. 2014;23(2):83–8.

    PubMed  Google Scholar 

  2. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res. 1991;25:889–902.

    PubMed  Google Scholar 

  3. Den Hartog L, Slatter JJ, Vissink A, Meijer HJ, Raghoebar GM. Treatment outcome of immediate early and conventional single-tooth implants in the aesthetic zone : a systematic review to survival, bone level, soft tissue, aesthetics and patient satisfaction. J Clin Periondontol. 2008;35:1073–86.

    Google Scholar 

  4. Piatelli A, Pontes AE, Degidi M, Iezzi G. Histologic studies on osseointegration soft tissues response to implant surfaces and components. A review. Dent Mater. 2011;27:53–60.

    Google Scholar 

  5. Branemark PI. Osseointegration and its experimental background. J Prosthet Dent. 1983;50:399–410.

    PubMed  Google Scholar 

  6. Doblare M, Garcia JM. Anisotropic bone remodelling model based on a continuum damage-repair theory. J Biotech. 2002;35:1–17.

    Google Scholar 

  7. O’Mahony AM, Williams JL, Katz JO, Spencer P. Anisotropic elastic properties of cancellous bone from human edentulous mandible. Clin Oral Implants Res. 2000;11:415–21.

    PubMed  Google Scholar 

  8. Chou HY, Jagodnik JJ, Müftü S. Prediction of bone remodelling around dental implant systems. J Biotech. 2008;41:1365–73.

    Google Scholar 

  9. Dominiak M, Lysiak-Drwal K, Solski L, Zywicka B, Rybak Z, Gedrange T. Evaluation of healing processes of intraosseous defects with and without guided bone regeneration and platelet rich plasma. An animal study. Ann Anat. 2012;194:549–55.

    PubMed  Google Scholar 

  10. Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int. 1985;37:411–7.

    PubMed  Google Scholar 

  11. Sagırkaya E, Kucukkekenci AS, Karasoy D, Akca K, Eckert SE, Cehreli MC. Comparative assessments, meta-analysis and recommended guidelines for reporting studies on histomorphometric bone-implant-contact in humans. Int J Oral Maxillofac Implants. 2013;28:1243–53.

    PubMed  Google Scholar 

  12. Javed F, Ahmed HB, Crespi R, Romanos GE. Role of primary stability for successful osseointegration of dental implants: factors influence and evaluation. Invert Med Appl Sci. 2013;5:162–7.

    Google Scholar 

  13. Esposito M, Grusovin MG, Chew YS, Coulthard P, Worthington HV. One-stage versus two-stage implant placement. A cochrane systematic review of randomized controlled trials. Euro J Oral Implantol. 2009;2:91–9.

    Google Scholar 

  14. Hasan I, Dominiak M, Blaszczyszyn A, Bourauel C, Gedrange T, Heinemann F. Radiographic evaluation of bone density around immediately loaded implants. Ann Anat. 2015;199:52–7.

    PubMed  Google Scholar 

  15. Botzenhart U, Kunert-Keil C, Heinemann F, Gredes T, Seiler J, Berniczei-Royko A, Gedrange T. Osseointegration of short titan implants: a pilot study in pigs. Ann Anat. 2015;199:16–22.

    PubMed  Google Scholar 

  16. Friberg B, Jemt T, Lekholm U. Early failures in 4641 consecutively placed Branemark dental implants: a study from stage 1 surgery to the connection of completed prostheses. Int J Oral Maxillofac Implants. 1991;6:142–6.

    PubMed  Google Scholar 

  17. Friberg B, Ekestubbe A, Sennerby L. Clinical outcome of Brenamark system implants of various diameters: a retrospective study. Int J Oral Maxillofac Implants. 2002;17:671–7.

    PubMed  Google Scholar 

  18. Heinemann F, Bourauel C, Hasan I, Gedrange T. Influence of the implant cervical topography on the crystal bone resorption and immediate implant survival. J Physiol Pharmacol. 2009;60(Suppl. 8):99–105.

    PubMed  Google Scholar 

  19. Heinemann F, Mundt T, Biffar R, Gedrange T, Götz W. A 3 year clinical and radiographic study of implants placed simultaneously with maxillary sinus floor augmentation using a new nano crystalline hydroxyapatite. J. Physiol. Pharmacol. 2009b;60(Suppl. 8):91–7.

    PubMed  Google Scholar 

  20. Kieswetter K, Schwartz Z, Dean DD, Boyan BD. The role of implant surface characteristics in the healing of bone. Crit Rev Oral Bill Med. 1987;7:329–45.

    Google Scholar 

  21. Degasne B, Basle MF, Demais V, Hure G, Lesourd M, Grolleau B, Mercier L, Chappard D. Effects of roughness, fibronectin and vitronectinon attachment, spreading, and proliferation of human osteoblast like cells (Saos-2) on titanium surfaces. Calico Tissue Int. 1999;64:499–507.

    Google Scholar 

  22. Hansson S, Norton M. The relation between surface roughness and interfacial shear strength for bone-anchored implants. A mechanical model. J Biotech. 1999;32:829–36.

    Google Scholar 

  23. Vaillancourt H, Piliar RM, McCammond D. Finite element analysis of crestal bone loss around porous coated dental implants. J Appl Biomater. 1995;6:267–82.

    PubMed  Google Scholar 

  24. Thakur AJ. The elements of fracture fixation. New York: Churchill Livingstone; 1997. p. 27–56.

    Google Scholar 

  25. Esposito M, Grusovin MG, Coulthard P, Worthington HV. Different loading strategies for dental implants. A cochrane systematic review of randomized controlled trials. Eur J Oral Implantol. 2008;1:259–76.

    PubMed  Google Scholar 

  26. Lundgren CG. In vivo fracture of a basket-type osseointegration dental implant: a case report. Int J Oral Maxillofac Implants. 1989;4:255–6.

    Google Scholar 

  27. Falk H, Laurell L, Lundgren D. Occlusal force pattern in dentitions with mandibular implant-supported fixed cantilever prostheses occluded with completed dentures. Int J Oral Maxillofac Implants. 1989;4:55–62.

    PubMed  Google Scholar 

  28. Smith E, Raab DM. Osteoporosis and physical activity. Acta Med Scand Suppl. 1987;5(Suppl):149–56.

    Google Scholar 

  29. Roberts WE. Bone tissue interface. J Dent Educ. 1988;52:804–9.

    PubMed  Google Scholar 

  30. Block MS, Finger LM, Fontenot MG, Kent JN. Loaded hydroxylapatite-coated and grit-blasted titanium implants in dogs. Int J Oral Maxillofac Implants. 1989;4:219–25.

    PubMed  Google Scholar 

  31. Bart E, Johansson C, Albrektsson T. Histologic comparison of ceramic and titanium implants in cats. Int J Oral Maxillofac Implants. 1990;5:227–331.

    Google Scholar 

  32. Donath K, Brauner G. A method for the study of undecalcified bones and teeth with attached soft tissues. The Säge-Schliff (sawing and grinding) technique. J Oral Path. 1982;11:318–26.

    PubMed  Google Scholar 

  33. Grötz KA, Piepkorn B, Al-Nawas B, Duscher H, Bittinger F, Kann P, Beyer J, Wagner W. Confocal laser scanning microscopy: a non destructive subsurface histotomography of healthy human bone. Calcif Tissue Int. 1999;65:8–10.

    PubMed  Google Scholar 

  34. Al-Nawas B, Götz H. Three dimensional topographic and metrologic evaluation of dental implants by confocal laser scanning microscopy. Clin Implant Dent Relat Res. 2003;5:176–83.

    PubMed  Google Scholar 

  35. Orsini G, Piatelli M, Scarano A, Petrone G, Kenaly J, Piatelli A, Caputi S. Randomized, controlled histological and histomorphometric evaluation of implants with nanometer-scale calcium phosphate added to the dual acid-etched surface in the human posterior maxilla. J Periodontol. 2007;78:209–18.

    PubMed  Google Scholar 

  36. Marin C, Granato R, Suzuki M, Gil JN, Piatelli A, Coelho PG. Removal torque and histomorphometric evaluation of bioceramic grit-blasted/acid etched and dual acid etched, implant surfaces: an experimental study in dogs. J Periodontol. 2008;78:209–18.

    Google Scholar 

  37. Fontana F, Rocchietta I, Addis A, Schupbach P, Zanotti G, Simion M. Effects of a calcium phosphate coating on the osseointegration of endosseous implants in a rabbit model. Clin Oral Implants Res. 2011;22:760–6.

    PubMed  Google Scholar 

  38. Chang CS, Lee TM, Chang CH, Liu JK. The effect of microrough surface treatment on miniscrews used as orthodontic anchors. Clin Oral Implants Res. 2009;20:1178–84.

    PubMed  Google Scholar 

  39. Lee J, Sieweke JH, Rodriguez NA, Schupbach P, Lindstrom H, Susin C, Wikesjo UM. Evaluation of nano-technology modified zirconia oral implants: a study in rabbits. J Clin Periodontol. 2009;36:610–7.

    PubMed  Google Scholar 

  40. Vidigal GM, Groisman M, Gregorio LH, Soares GDA. Osseointegration of titanium alloy and HA coated implants in healthy and ovariectomized animals. A histomorphometric study. Clin Oral Implants Res. 2009;20:1272–7.

    PubMed  Google Scholar 

  41. Manresa C, Bosch M, Manzanares MC, Carvalho P, Echeverria JJ. A new standardized-automatic method for bone-to-implant contact histomorphometric analysis based on backscattered scanning electron microscopy images. Clin Oral Implants Res. 2014;25:702–6.

    PubMed  Google Scholar 

  42. Bernhardt R, Kuhlisch E, Schulz MC, Eckelt U, Stadlinger B. Comparison of bone-implant contact and bone-implant volume between 2D histological sections and 3D SRμCT slices. Eur Cells Mater. 2012;23:237–48.

    Google Scholar 

  43. Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, Hoffmann B, Lussi A, Steinemann SG. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res. 2004;83:529–33.

    PubMed  Google Scholar 

  44. Ferguson SJ, Broggini N, Wieland M, deWild M, Rupp F, Geis-Gerstorfer J, Cochran DL, Buser D. Biomechanical evaluation of the strength of a chemically modified sandblasted and acid etched titanium surface. J Biomed Mater Res. 2006;78:291–7.

    Google Scholar 

  45. Papavasiliou G, Kamposiora P, Bayne SC, Felton DA. 3d-FEA of osseointegration in percentages and patterns on implant-bone interfacial stresses. J Dent. 1997;25:485–91.

    PubMed  Google Scholar 

  46. Bouaruel C, Aitlahrach M, Heinemann F, Hasan I. Biomechanical finite element analysis of small diameter and short dental implants: extensive study of commercial implants. Biomed Tech. 2012;57:21–32.

    Google Scholar 

  47. Hassan I, Bourauel C, Mundt T, Heinemann F. Biomechanical finite element analysis of small diameter and short dental implant. Biomed Tech. 2013;55:341–55.

    Google Scholar 

  48. Morand M, Irinakis T. The challenge of implant therapy in the posterior maxilla: providing a rationale for the use of short implants. J Oral Implantol. 2007;33:257–66.

    PubMed  Google Scholar 

  49. Sivolella S, Stellini E, Testori T, Di Fiore A, Berngo M, Lops D. Splinted and unsplinted short implants in mandibles: a retrospective evaluation with 5 to 16 years follow-up. J Periodontol. 2013;84:502–12.

    PubMed  Google Scholar 

  50. Draenert FG, Sagheb K, Baumgardt K, Kammerer PW. Retrospective analysis of survival rates and marginal bone loss on short implants in the mandible. Colin Oral Implants Res. 2012;23:1063–9.

    Google Scholar 

  51. Esposito M, Pistilli R, Barausse C, Felice P. Three year results from a randomized controlled trial comparing prostheses supported by 5mm long implants or by longer implants in augmented bone in posterior edentulous jaws. Eur J Oral Implantol. 2014;7:383–95.

    PubMed  Google Scholar 

  52. Lai H-C, Si M-S, Zhuang LF, Shen H, Liu YL, Wismeijer D. Longterm outcomes of short dental implants supporting single crowns in posterior region: Z clinical retrospective study of 5 to 10 years. Clin Oral Implants Res. 2013;24:230–7.

    PubMed  Google Scholar 

  53. Bidez MW, Misch CE. Clinical biomechanics in implant dentistry. In: Misch CE, editor. Contemporary implant dentistry. St. Louis: Mosby; 2008. p. 543–55.

    Google Scholar 

  54. Sanz M, Naert I. Biomechanics/risk management (Working Group 2). Clin Oral Implants Res. 2009;4:107–11.

    Google Scholar 

  55. Nissan J, Ghelfan O, Gross O, Priel I, Gross M, Chaushu G. The effect of crown/implant ratio and crown height space on stress distribution in unsplinted implant supporting restorations. J Oral Maxillofac Surg. 2011;69:1934–9.

    PubMed  Google Scholar 

  56. Nissan J, Gross O, Ghelfan O, Priel I, Gross M, Chaushu G. The effect of splinting implant-supported restorations on stress distribution of different crown-implant ratios and crown height spaces. J Oral Maxillofac Surg. 2011;69:2990–4.

    PubMed  Google Scholar 

  57. Anitua E, Alkhraist MH, Pinas L, Begona L, Orive G. Implant survival and crestal bone loss around extra-short implants supporting a fixed denture: the effect of crown height space, crown to implant ratio, and offset placement of the prosthesis. Int J Oral Maxillofac Implants. 2014;29:682–9.

    PubMed  Google Scholar 

  58. Anitua E, Flores J, Flores C, Alkhraisat MH. Longterm outcomes of immediate loading of short implants: a controlled retrospective cohort study. Int J Oral Maxillofac Implants. 2016;31:1360–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kisnisci, R.S., Kocyigit, I.D. (2020). Significance of Bone–Implant Contact in Short Implants and Clinical Impact. In: Tomasetti, B., Ewers, R. (eds) Short Implants. Springer, Cham. https://doi.org/10.1007/978-3-030-44199-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44199-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44198-2

  • Online ISBN: 978-3-030-44199-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics