Skip to main content

Green Aspects of Scale-Up Synthesis of Some APIs, Drug Candidates Under Development or Their Critical Intermediates

  • Chapter
  • First Online:
Applications of Nanotechnology for Green Synthesis

Abstract

The ultimate goal of a process chemist is to achieve robust synthetic processes for active pharmaceutical ingredients (API), drug candidates under development or their critical intermediates. The process developed should be economical, safe and at the same time using green chemistry concepts with minimal impurity formations and achieving higher yields. While doing so, it is prudent on the part of a chemist to review all the available literature, study the various routes of synthesis and chose the one that can be commensurate with the above laid down goals with a view on commercial viability and scaling up to higher levels. It is also one of the goals of the synthetic organic chemist to identify and limit the formation of impurities and degradation products, if any, at each step in the synthesis that helps in achieving higher yields. One of the principal parts of the documentation of the API is a description of impurities or degradation products formed during the process. The identified main impurities and degradation products crossing the threshold levels need to be isolated or synthesized independently by the process chemist for quantification of their levels in API and documentation purposes.

With these concepts in the background, the chemist explores each step in a chemical process preferring usage of relatively greener solvents, commercially viable reagents and the necessary equipment that can be easily procured and installed for achieving the objective with minimal levels of maintenance. In this review article, scale-up processes for some of the APIs, drug candidates under development or their critical intermediates, reported in recent literature, highlighting the greener aspects of such commercially viable processes and achieving the synthesis with the minimal number of steps and higher yields will be reviewed to grab the interest of the researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[Ir(COD)OMe]2:

bis(1,5-Cyclooctadiene)di-μ-methoxydiiridium

2,2′-bpy:

2,2′-Bipyridyl

B2Pin2:

bis(Pinacolato)diborane

Boc2O:

di-tert-Butyl dicarbonate

CDI:

N,N′-Carbonyldiimidazole

CyH:

Cyclohexane

DBH:

1,3-Dibromo-5,5-dimethylhydantoin

DBU:

1,8-Diazabicyclo[5.4.0]undec-7-ene

DCM:

Dichloromethane

DIPEA:

Diisopropylethylamine

DMAP:

4-Dimethylaminopyridine

DMF:

Dimethylformamide

DMSO:

Dimethyl sulfoxide

DTTA:

di-p-Toluoyl-L-tartaric acid

IPA:

Isopropyl alcohol

IPy2BF4:

bis(Pyridine)iodonium tetrafluoroborate

LDA:

Lithium diisopropylamide

MsOH:

Methane sulfonic acid

NBS:

N-Bromosuccinimide

NMM:

N-Methylmorpholine

NMP:

N-Methylpyrrolidone

Pd(dppf)Cl 2 :

[1,1’-bis(Diphenylphosphino)ferrocene]dichloropalladium(II)

RT:

Room temperature

TBAB:

Tetrabutylammonium bromide

TBz-Cl:

tert-Butyldimethylsilyl chloride

TEA:

Trimethylamine

TFA:

Trifluoroacetic acid

TsCl:

Tosyl chloride

TsOH:

p-Toluenesulfonic acid

References

  • Aalla S, Gilla G, Metil DS, Anumula RR, Vummenthala PR, Padi PR. Org Process Res Dev. 2012a;16:240–3. https://doi.org/10.1021/op200325u.

    Article  CAS  Google Scholar 

  • Aalla S, Gilla G, Anumula RR, Kurella S, Padi PR, Vummenthala PR. Org Process Res Dev. 2012b;16:748–54. https://doi.org/10.1021/op300026r.

    Article  CAS  Google Scholar 

  • Adolfo M, Mario JS, Leonardo SS. Tetrahedron Lett. 2013;54:5096–8.

    Article  Google Scholar 

  • Allely MC, Alps BJ. Br J Pharmacol. 1988;93:375–82.

    Article  CAS  Google Scholar 

  • Andreas B. WO Patent 2006114202, 2006.

    Google Scholar 

  • Ansari SA, Hirpara HM, Yadav AK, Gianchandani JP. WO2012164516, 2012.

    Google Scholar 

  • Ataka K, Miyata H, Kohno M, Yokota N, Yamamoto Y. U.S. 5,874,581, 1999.

    Google Scholar 

  • Athalye SS, Parghi KD, Ranbhan KJ, Sarjekar PB. WO2012/153341, 2012.

    Google Scholar 

  • Azad MAK, Pandey G, Singh K, Prasad M, Arora SK. WO2012/090138 A1, 2012.

    Google Scholar 

  • Baltes E, de Lannoy J, Rodrigez L. EP 0058146, 1982, Chemical Abstract. 1983; 98:34599r.

    Google Scholar 

  • Xuefei Bao, Dake Song, Xuejun Qiao, Xuan Zhao, Guoliang Chen. Org Process Res Dev. 2016; 20:14821488. https://doi.org/10.1021/acs.oprd.6b00170.

  • Basappa, Kavitha CV, Rangappa KS. Bioorg Med Chem Lett. 2004;14:3279–81.

    Article  CAS  Google Scholar 

  • Bernthsen A. Ber Dtsch Chem Ges. 1883;16:2896.

    Article  Google Scholar 

  • Bettoni P, Roletto J, Paissoni P. EP 2644608A1, 2013.

    Google Scholar 

  • Bjork AKK, Abramo AL, Kjellberg BES US 4366162, 1982.

    Google Scholar 

  • Blumenkopf TA, Flanagan ME, Munchhof MJ. U.S. patent USRE41783E, 2010.

    Google Scholar 

  • Bobrowska E, Stelmach P, Kalbarczyk E, Witkowska T. PL 163415, 1990, Chemical Abstract. 1995; 123:55923s.

    Google Scholar 

  • Burbaum BW, Gilson CA, Aytes S, Estrada SA, Sengupta D, Smith B, Rey M, Weigl U. WO Patent 2005019179, 2005.

    Google Scholar 

  • Burgos A, Tonnel J, Dambrin V, Lucet D, Poirier P. U.S. Patent 7,462,742 B2, 2008.

    Google Scholar 

  • Louis-Charles Campeau, Qinghao Chen, Danny Gauvreau, Melina Girardin, Kevin Belyk, Peter Maligres, Guoyue Zhou, Chaozhan Gu, Wei Zhang, Lushi Tan, Paul D. O’Shea. Org Process Res Dev. 2016; 20:14761481. https://doi.org/10.1021/acs.oprd.6b00163.

  • Chavan SP, Kamat SK, Sivadasan L, Balakrishnan K, Khobragade DA, Ravindranathan T, Gurjar MK, Kalkote UR. Tetrahedron Lett. 2004;45:7291–5.

    Article  CAS  Google Scholar 

  • Chavan SP, Khobragade DA, Thakkar MT, Kalkote UR. Synth Commun. 2007;37:3901–6.

    Article  CAS  Google Scholar 

  • Chen M. China patent CN102180868, 2011.

    Google Scholar 

  • Cossement E, Motte G, Bodson G, Gobert J. GB 2225321, 1990, Chemical Abstract. 1990a; 113:191396t.

    Google Scholar 

  • Cossement E, Gobert J, Bodson G. GB 2225320, 1990, Chemical Abstract. 1990b; 113:191395s.

    Google Scholar 

  • Côté B, Burch JD, Asante-Appiah E, Bayly C, Bédard L, Blouin M, Campeau L-C, Cauchon E, Chan M, Chefson A, Coulombe N, Cromlish W, Debnath S, Deschênes D, Dupont-Gaudet K, Falgueyret J-P, Forget R, Gagné S, Gauvreau D, Girardin M, Guiral S, Langlois E, Li CS, Nguyen N, Papp R, Plamondon S, Roy A, Roy S, Seliniotakis R, St-Onge M, Ouellet S, Tawa P, Truchon J-F, Vacca J, Wrona M, Yan Y, Ducharme Y. Bioorg Med Chem Lett. 2014; 24:917.

    Google Scholar 

  • Dhiraj MR, Srinivasan R, Milind MG, Nishant MP, Mandar MD. U.S. Patent 6,756,502 B2, 2004.

    Google Scholar 

  • Dwivedi SD, Patel DJ, Shah AP. WO2012/063269, 2012.

    Google Scholar 

  • Ernest WG, Christian K, Ton V, Edward FM, Munchhof MJ. PCT WO 02096909, 2002.

    Google Scholar 

  • Eva A–C, Tibor G, Kalman H, Ferenc T, Aniku D–S, Attila C, Eva V, Gyorgyi S–K. EP 0,483,932 A1, 1992.

    Google Scholar 

  • Fairfax DJ, Hemandez PE, Michalson ET. US 6265579, 1999, Chemical Abstract. 2001; 134:340523.

    Google Scholar 

  • Feng J, Gwaltney SL, et al. Dipeptidyl Peptidase Inhibitors. PCT International Application WO 2007035629, March 29, 2007.

    Google Scholar 

  • Finn PW, Bandara M, Butcher C, Finn A, Hollinshead R, Khan N, Law N, Murthy S, Romero R, Watkins C, Andrianov V, Bokaldere RM, Dikovska K, Gailite V, Loza E, Piskunova I, Starchenkov I, Vorona M, Kalvinsh I. Helv Chim Acta. 2005; 88:1630.

    Google Scholar 

  • Flanagan ME, Munchhof MJ. U.S. patent US7301023B2, 2007.

    Google Scholar 

  • Foss F, Advani R, Duvic M, Hymes KB, Intragumtornchai T, Lekhakula A, Shpilberg O, Lerner A, Belt RJ, Jacobsen ED, Laurent G, Ben-Yehuda D, Beylot-Barry M, Hillen U, Knoblauch P, Bhat G, Chawla S, Allen LF, Pohlman B. Br J Haematol. 2015; 168:811.

    Google Scholar 

  • Fraser H, Belardinelli L, Wang L, Light PE, McVeigh JJ, Clanachan AS. J. Mol Cell Cardiol. 2006;41:1031–8.

    Article  CAS  Google Scholar 

  • Gharbaoui T, Tandel SK, Ma Y, Carlos M, Fritch JR. WO Patent 2008070111, 2008.

    Google Scholar 

  • Goodman SN, Wang H, Mans D, Kowalski M. US9120817B2. n.d.

    Google Scholar 

  • Grimshaw CE, Jennings A, Kamran R, Ueno H, Nishigaki N, Kosaka T, Tani A, Sano H, Kinugawa Y, Koumura E, Shi L, Takeuchi K. PLoS One. 2016;11:e0157509.

    Article  Google Scholar 

  • Hale SL, Kloner RA. J Cardiovasc Pharmacol Ther. 2006;11:249–55.

    Article  CAS  Google Scholar 

  • Heinrich T, Bottcher H, Gericke R, Bartoszyk GD, Anzali S, Seyfried CA, Greiner HE, Amsterdam CV. J Med Chem. 2004; 47:4684. https://doi.org/10.1021/jm040793q

  • Heinrich T, Gradler U, Bottcher H, Blaukat A, Shutes A. ACS Med Chem Lett. 2010; 1:199. https://doi.org/10.1021/ml100044h

  • Hu B, Song Q, Xu Y. Org Process Res Dev. 2012;16:1552–7. https://doi.org/10.1021/op300171m.

    Article  CAS  Google Scholar 

  • International Conference on Harmonisation (ICH). Q7, Current Step 4 version, dated 10 November 2000.

    Google Scholar 

  • International Conference on Harmonisation (ICH). Q3C (R5), February 2011.

    Google Scholar 

  • International Conference on Harmonisation (ICH). Q11, Current Step 4 version, dated 1 May 2012.

    Google Scholar 

  • Jacob RM, Robert JG. German Patent No. DE1092476, 1959.

    Google Scholar 

  • Jerling M. Clin Pharmacokinet. 2006;45:469–91.

    Article  CAS  Google Scholar 

  • Johns BA, Kawasuji T, Taishi T, Taoda Y. WO 2006116764A1. n.d.

    Google Scholar 

  • Karicherla V, Phani K, Bodireddy MR, Prashanth KB, Gajula MR, Pramod K. Org Process Res Dev. 2017;21:720–31. https://doi.org/10.1021/acs.oprd.7b00052.

    Article  CAS  Google Scholar 

  • Kawasuji T, Johns BA, Yoshida H, Taishi T, Taoda Y, Murai H, Kiyama R, Fuji M, Yoshinaga T, Seki T, Kobayashi M, Sato A, Fujiwara T. J Med Chem. 2012;55:8735. https://doi.org/10.1021/jm3010459.

    Article  CAS  PubMed  Google Scholar 

  • Kawasuji T, Johns BA, Yoshida H, Weatherhead JG, Akiyama T, Taishi T, Taoda Y, Mikamiyama-Iwata M, Murai H, Kiyama R, Fuji M, Yoshinaga T, Seki T, Kobayashi M, Sato A, Garvey EP, Fujiwara T. J Med Chem. 2013;56:1124. https://doi.org/10.1021/jm301550c.

    Article  CAS  PubMed  Google Scholar 

  • Kluge AF, Clark RD, Strosberg AM, Pascal JG, Whiting R. U.S. 4,567,264, 1986.

    Google Scholar 

  • Kluge AF, Clark RD, Strosberg AM, Pascal JC, Whiting RL. EP 0,126,449, 1987a.

    Google Scholar 

  • Kluge AF, Clark RD, Strosberg AM, Pascal JC, Whiting R. CA 1,256,874, 1987b.

    Google Scholar 

  • Knoevenagel EJ. J Prakt Chem. 1914;89:1–50.

    Article  CAS  Google Scholar 

  • Kohara Y, Imamiya E, Kubo K, Wada T, Inada Y, Naka T. Bioorg Med Chem Lett. 1995;5:1903–8.

    Article  CAS  Google Scholar 

  • Kohara Y, Kubo K, Imamiya E, Wada T, Inada Y, Naka T. J Med Chem. 1996;39:5228–35.

    Article  CAS  Google Scholar 

  • Koike H, Asai F, Sugidachi A, Kimura T, Inoue T, Nishino S, Tsuzaki Y. U.S. 5,288,726, 1994.

    Google Scholar 

  • Kristin EP, Claude L-A, Brett ML, Robert WM, Jason M, Kevin WH, Jeol MH, Rajappa V. Org Lett. 2009;11:2003–6.

    Article  Google Scholar 

  • Kuroita T, Sakamoto H, Ojima M. (Takeda Chemical Industries). U.S. Patent Application 0,187,269, 2005.

    Google Scholar 

  • Kuroita T, Sakamoto H, Ojima M. (Takeda Chemical Industries). U.S. Patent Application 7,157,584, 2007.

    Google Scholar 

  • Lee, H. Z., Witkowski VE, Del Valle POL, Ricci MS, Saber H, Habtemariam BA, Bullock J, Bloomquist E, Li Shen Y, Chen XH, Brown J, Mehrotra N, Dorff S, Charlab R, Kane RC, Kaminskas E, Justice R, Farrell AT, Pazdur R. Clin Cancer Res. 2015; 21:2666.

    Google Scholar 

  • Li JQ, Wang G, Wang C, Wang JJ. China patent CN102267932, 2011a.

    Google Scholar 

  • Li JQ, Wang G, Wang C, Huang L. China patent CN102267985, 2011b.

    Google Scholar 

  • Lisheng W, Xiaoyu, F., Hong-yuan, Z. J. Guangxi University (Natural Science Education). 2003; 28:301–303.

    Google Scholar 

  • Liu JF. WO Patent 2009051747, 2009.

    Google Scholar 

  • Luo J, Li R, Li C, Lei G, Su Y, Chen Q. China Patent 104478769 A, Apr 1, 2015.

    Google Scholar 

  • Massie SP. Chem Rev. 1954;54:797.

    Article  CAS  Google Scholar 

  • Mohanty S, Talasila S, Roy AK, Karmakar AC. Org Process Res Dev. 2014;18:168–73. https://doi.org/10.1021/op400196y.

    Article  CAS  Google Scholar 

  • Morris Husbands GE, Yardley JP, Mills G, Muth EA. U.S. Patent 4,535,186, 1985.

    Google Scholar 

  • Mubeen AK, Reddy SS, Rao AB, Shankar S. WO 2010/ 070677 A2, 2010.

    Google Scholar 

  • Naka T, Inada Y. (Takeda Chemical Industries). European Patent Application EP 0,520,423, 1992.

    Google Scholar 

  • Naka T, Inada Y. (Takeda Chemical Industries). U.S. Patent 5,583,141, 1996.

    Google Scholar 

  • O’Connor OA, Horwitz S, Masszi T, Van Hoof A, Brown P, Doorduijn J, Hess G, Jurczak W, Knoblauch P, Chawla S, Bhat G, Choi MR, Walewski J, Savage K, Foss F, Allen LF, Shustov A. J Clin Oncol. 2015; 33:2492.

    Google Scholar 

  • Patil YS, Bonde NL, Kekan AS, Sathe DG, Das A. Org Process Res Dev. 2014;18:1714–20. https://doi.org/10.1021/op500274j.

    Article  CAS  Google Scholar 

  • Qian J, Zhang G, Qin H., Zhu Y, Xiao Y. China Patent 102786448 A, Nov 21, 2012.

    Google Scholar 

  • Radl S, Cerny J, Stach J, Gablikova Z. Org Process Res Dev. 2013;17:77–86., dx.doi.org. https://doi.org/10.1021/op3002867.

    Article  CAS  Google Scholar 

  • Rahul S, Venkateswaran SC, Lalit W WO 2008/047388 A2, 2008.

    Google Scholar 

  • Raman JV, Rane D, Kevat J, Patil D. WO2011/154860, 2011.

    Google Scholar 

  • Reddy PP, Sarma PSR, Reddy GM, Srinivas P, Praveen C, Babu I, Shailaja P, Krishna J, Krishna V, Kavitha N. U.S. 2010/0261908 A1, 2010.

    Google Scholar 

  • Reguri BR, Arunagiri M, Yarroju PC, Kasiyappan GS, Ponnapall K. WO2011/055188, 2011.

    Google Scholar 

  • Reisch H, Leeming P, Raje PS. WO Patent 2009040517 A2, Apr 2, 2009.

    Google Scholar 

  • Reiter J, Trinka P, Bartha FL, Pongo L, Volk B, Simig G. Org Process Res Dev. 2012;16:1279–82. https://doi.org/10.1021/op300009y.

    Article  CAS  Google Scholar 

  • Robert LF, James RB, Robert JD, Robert LM, Fared EW. J Am Chem Soc. 1946;68:1368.

    Article  Google Scholar 

  • Sankareswaran S, Mannam M, Chakka V, Mandapati SR, Kumar P. Org Process Res Dev. 2016;20:1461–8. https://doi.org/10.1021/acs.oprd.6b00156.

    Article  CAS  Google Scholar 

  • Saravanan M, Satyanarayana B, Reddy PP. Org Process Res Dev. 2011;15:1392–5. https://doi.org/10.1021/op200221y.

    Article  CAS  Google Scholar 

  • Satyanarayana Reddy M, Eswaraiah S, Satyanarayana K. Indian Patent No. 360/CHE/2010 A, Aug 19, 2011.

    Google Scholar 

  • Shinhama K, Utsumi N, et al. Method for producing benzo[b]thiophene compound. PCT International Application WO 2013015456, Jan 31, 2013.

    Google Scholar 

  • Shiwei Z, Feng J. US 2012/0172699A1, 2012.

    Google Scholar 

  • Shu-chun L, He-qing H, Zhong-jun L. Chin J Med Chem. 2003;13:283–5.

    Google Scholar 

  • Sindelar K, Holubek J, Koruna I, Hrubantova M, Protiva M. Collect Czechoslov Chem Commun. 1990;55:1586–601.

    Article  CAS  Google Scholar 

  • Smith J, Smith B. U.S. Patent 2003225057, 2003.

    Google Scholar 

  • Smith B, Smith J. U.S. Patent 6953787, 2005.

    Google Scholar 

  • Smith B, Gilson C, Schultz J, Smith J. WO Patent 2005003096, 2005.

    Google Scholar 

  • Solanki PV, Uppelli SB, Pandit BS, Mathad VT. Org Process Res Dev. 2014;18:342–8. https://doi.org/10.1021/op400335p.

    Article  CAS  Google Scholar 

  • Srinivas RAVV, Jalindar J, Srinivas G, Pillai BG, Sadanand NS. WO 2009/122440 A1, 2009.

    Google Scholar 

  • Stavber G, Cluzean J. PCT WO 2014016338A1, 2014.

    Google Scholar 

  • Stavber G, Jerome C, Frank R, Gerhard L, Ivana GS. WO Patent 2014173928, 2014a.

    Google Scholar 

  • Stavber G, Ivana GS, Jerome C, Frank R. WO Patent 2014202765, 2014b.

    Google Scholar 

  • Strupczewski JT, Helsley GC, Chiang Y, Bordeau KJ. EP 0402644A1, 1990.

    Google Scholar 

  • Sumino Y, Masui M, Yamada D, Ikarashi F, Okamoto K. US20140011995. n.d.

    Google Scholar 

  • Thomas A, Rajan A, Szabo E, Tomita Y, Carter CA, Scepura B, Lopez-Chavez A, Lee MJ, Redon CE, Frosch A, Peer CJ, Chen Y, Piekarz R, Steinberg SM, Trepel JB, Figg WD, Schrump DS, Giaccone G. Clin Cancer Res. 2014; 20:5392.

    Google Scholar 

  • Wang H, Kowalski MD, Lakdawala AS, Vogt FG, Wu L. Org Lett. 2015;17:564. https://doi.org/10.1021/ol503580t.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Luo J, Cao Y, Zhang L, Li C, Yuan Q. China Patent 105367455 A, Mar 2, 2016.

    Google Scholar 

  • Watkins CJ, Romero-Martin MR, Moore KG, Ritchie J, Finn PW, Kalvinsh I, Loza E, Dikovska K, Gailite V, Vorona M, Piskunova I, Starchenkov I, Adrianov V, Harris CJ, Duffy JES. U.S. Patent 6,888,027 B2, May 3, 2005.

    Google Scholar 

  • Weigl U, Porstmann F, Straessler C, Ulmer L, Koetz U. U.S. Patent 20090143576, 2009.

    Google Scholar 

  • Chunhui Wu, Weiming Chen, Dehui Jiang, Xiangrui Jiang, Jingshan Shen. Org Process Res Dev. 2015; 19:555558. https://doi.org/10.1021/acs.oprd.5b00027.

  • Xiao-lin C, Yong-zhou H. West China J Pharm Sci. 2004;19:191–2.

    Google Scholar 

  • Xu W, Zhang RJ, Zhu B. China patent CN102249979, 2011.

    Google Scholar 

  • Shenghui Xu, Qun Hao, Hongyan Li, Zhenren Liu, Weicheng Zhou. Org Process Res Dev. 2017; 21:585–589. https://doi.org/10.1021/acs.oprd.7b00013.

  • Yamashita H, Matsubara J, et al. Piperazine-Substituted benzothiophenes for treatment of mental disorders. PCT International Application WO 2006112464, Oct 26, 2006.

    Google Scholar 

  • Yang L., Xue X, Zhang Y. Synth Commun. 2010, 40, 2520.

    Google Scholar 

  • Yardley JP, MorrisHusbands GE, Stack G, Butch J, Bicksler J, Moyer JA, Muth EA, Andree T, Fletcher H III, James MNG, Sielecki AR. J Med Chem. 1990;33:2899–905. https://doi.org/10.1021/jm00172a035.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Taoda Y, Johns BA, Kawasuji T, Nagamatsu D. US8754214B2. n.d.

    Google Scholar 

  • Zhang X, Zhang K, et al. Compound for Preparing Pyrimidinedione DPP-IV Inhibitors. China Patent. CN 103030631, April 10, 2013.

    Google Scholar 

  • Zhang H, Sun L, Zou L, Hui W, Liu L, Zou Q, Ouyang PJ. J Pharm Biomed Anal. 2016;128:18–27.

    Article  CAS  Google Scholar 

  • Zhu G. CN 101531667 A, 2009.

    Google Scholar 

  • Qihua Zhu, Junwei Wang, Xueguo Bian, Lingzhi Zhang, Ping Wei, Yungen Xu. Org Process Res Dev. 2015; 19:12631267. https://doi.org/10.1021/acs.oprd.5b00144.

Download references

Acknowledgements

The review was authored purely out of academic interest to familiarize the young process scientists with the intricacies of process development and guide them in understanding green chemistry aspects of scale-up synthesis. The examples covered are chosen from Organic Process Research and Development journal in this review. The authors of this review are highly appreciative of the scale-up research articles published in Organic Process Research and Development for their in-depth analysis and discussion. The authors of this review further acknowledge the original contributors and publishers of the articles cited here for their contributions, with a larger interest for the well-being of humanity the world over.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadavalli, V.D.N., Kambhampati, R.S. (2020). Green Aspects of Scale-Up Synthesis of Some APIs, Drug Candidates Under Development or Their Critical Intermediates. In: Inamuddin, Asiri, A. (eds) Applications of Nanotechnology for Green Synthesis. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-44176-0_7

Download citation

Publish with us

Policies and ethics