Skip to main content

Boric Acid: A Versatile Catalyst in Organic Synthesis

  • Chapter
  • First Online:
Applications of Nanotechnology for Green Synthesis

Abstract

In recent years, the concept of synthesis of organic compounds follows green chemistry principle in order to minimize environmental hazards caused due to organic solvents. Thus to implement an environment-friendly approach, researchers stand in a need of water-compatible catalysts in order to establish a library compound of pharmacologically important moieties with distinct properties.

Exceptional interest of researchers gained by the boric acid owing to its easy commercial availability, eco-friendly physicochemical properties. It is recently proven to be a good substitute for conventional acidic catalytic materials. Boric acid successfully catalysed various organic conversions useful in day-to-day chemistry lab such as addition, esterification, substitution and condensation type of reactions. Additionally, boric acid is also useful in numerous multicomponent reactions involved in the synthesis of various biologically important heterocycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alagarsamy V, Revathi R, Meena S, Ramasheshu KV, Rajashekam S, De Clercq E. AntiHIV, antibacterial and antifungal activities of some 2, 3-disubstituted quinazolin-4 (3H)-ones. Indian J Pharm Sci. 2004;66:459–62.

    Google Scholar 

  • Atwal KS, Moreland S. Dihydropyrimidine calcium channel blockers 51: bicyclic dihydropyrimidines as potent mimics of dihydropyridines. Bioorg Med Chem Lett. 1991;1:291–4. https://doi.org/10.1016/S0960-894X(01)80810-6.

  • Baker EL, Yamano MM, Zhou Y, Anthony SM, Garg NK. A two-step approach to achieve secondary amide transamidation enabled by nickel catalysis. Nat Commun. 2016;7:11554.

    Article  Google Scholar 

  • Bhattacharya A, Bandichhor R. Chapter 14, Green Technologies in the Generic Pharmaceutical Industry. In: Dunn P, Wells A, Williams MT, editors. Green chemistry in the pharmaceutical industry. Weinheim: Wiley-VCH; 2011. p. 289–309.

    Google Scholar 

  • Brun E, Safer A, Carreaux F, Bourahla K, L'Helgoua'Ch JM, Bazureau JP, Villalgordo J. Microwave-assisted condensation reactions of acetophenone derivatives and activated methylene compounds with aldehydes catalysed by boric acid under solvent-free conditions. Molecules. 2015;20(6):11617–31. https://doi.org/10.3390/molecules200611617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhuri MK, Hussain S. Boric acid catalysed thia-Michael reactions in water or alcohols. J Mol Catal A Chem. 2007;269(1–2):214–7. https://doi.org/10.1016/j.molcata.2007.01.014.

    Article  CAS  Google Scholar 

  • Chaudhuri MK, Hussain S, Kantam ML, Neelima B. Boric acid: a novel and safe catalyst for aza-Michael reactions in water. Tetrahedron Lett. 2005;46(48):8329–31. https://doi.org/10.1016/j.tetlet.2005.09.167.

    Article  CAS  Google Scholar 

  • Das BC, Mariappan G, Sudip S, Debjit B. Anthelmintic and anti-microbial activity of some novel chalcone derivatives. J Chem Pharm Res. 2010;2(1):113–20.

    CAS  Google Scholar 

  • Delbecq P, Celerier J-P, Lhommet G. Decarboxylation of cyclic β-enaminoketoesters with boric acid. Tetrahedron Lett. 1990;31:4873–4. https://doi.org/10.1016/S0040-4039(00)97756-6.

  • Eckert H. Diversity oriented syntheses of conventional heterocycles by smart multi component reactions (MCRs) of the last decade. Molecules. 2012;17:1074–102. https://doi.org/10.3390/molecules17011074.

  • Ganguly NC, Roy S, Mondal P. Boric Acid–Catalyzed One-Pot Access to 7-Aryl-benzopyrano[4,3-b] benzopyran-6,8-diones Under Aqueous Micellar Conditions. Synth Commun. 2014;44:433–40. https://doi.org/10.1080/00397911.2013.813546.

  • Garimallaprabhakaran A, Harmata M. Boric acid mediated N-acylation of Sulfoximines. Synlett. 2011:61–4.

    Google Scholar 

  • Gholap SS, Tambe GB. RJC Rasayan J Chem. 2008;1:862–4.

    Google Scholar 

  • Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem. 1999;1(1):55–68. https://doi.org/10.1021/cc9800071.

    Article  CAS  PubMed  Google Scholar 

  • Gogoi K, Dewan A, Gogoi A, Borah G, Bora U. Boric acid as highly efficient catalyst for the synthesis of phenols from arylboronic acids. Heteroat Chem. 2014;25(2):127–30. https://doi.org/10.1002/hc.21138.

    Article  CAS  Google Scholar 

  • Green TW, Wuts PGM. Protective groups in organic synthesis. 2nd ed. New York: Wiley; 1991.

    Google Scholar 

  • Halimehjnai AZ, Hosseyni S, Gholami H, Hashemi MM. Boric acid/glycerol as an efficient catalyst for synthesis of thiomorpholine 1, 1-dioxide by double Michael addition reaction in water. Synth Commun. 2013;43(2):191–7. https://doi.org/10.1080/00397911.2011.594930.

    Article  CAS  Google Scholar 

  • Harichandran G, Amalraj SD, Shanmugam P. Boric acid catalysed efficient synthesis of symmetrical N, N′-alkylidene bisamides. J Iran Chem Soc. 2011;8(1):298–305. https://doi.org/10.1007/BF03246228.

    Article  CAS  Google Scholar 

  • Heravi, M. R. P.; Ashori, M. Boric acid catalyzed convenient synthesis of benzimidazoles in aqueous media. J Chem. 2013, Article ID: 496413, 5 pages.

    Google Scholar 

  • Hosseinzadeh Z, Ramazani A, Razzaghi-Asl N, Slepokura K, Lis T. Boric acid as an efficient and green catalyst for the synthesis of 2-amino-4, 6-diarylnicotinonitrile under microwave irradiation in solvent-free conditions. Turk J Chem. 2019;43(2):464–74.. URL: http://journals.tubitak.gov.tr/chem/abstract.htm?id=24617

    Article  CAS  Google Scholar 

  • Houston TA, Wilkinson BL, Blanchfield JT. Boric acid catalysed chemoselective esterification of α-hydroxycarboxylic acids. Org Lett. 2004;6(5):679–81. https://doi.org/10.1021/ol036123g.

    Article  CAS  PubMed  Google Scholar 

  • Hunkeler W, Mohler H, Pieri L, Polc P, Bonetti EP, Cumin R, Schaffner R, Haefely W. Selective antagonists of benzodiazepines. Nature. 1981;290:514–6. https://doi.org/10.1038/290514a0.

  • Ion R-M, Planner A, Wiktorowicz K, Frackowiak D. The incorporation of various porphyrins into blood cells measured via flow cytometry, absorption and emission spectroscopy. Acta Biochim Pol. 1998;45:833–45.

    Google Scholar 

  • Karimi-Jaberi Z, Abdolaziz BJ. Boric acid catalysed synthesis of α-aminonitriles by a three-component reaction at room temperature. Chem Res. 2012;36:326–7. https://doi.org/10.3184/174751912X13352842814921.

  • Karimi-Jaberi Z, Amiri M. One‐pot synthesis of α‐aminophosphonates catalyzed by boric acid at room temperature. Heteroat Chem. 2010;21:96–8. https://doi.org/10.1002/hc.20577.

  • Karimi-Jaberi Z, Fakhraei H. Synthesis of 1-amidoalkyl-2-naphthols based on a three-component reaction catalyzed by boric acid as a solid heterogeneous catalyst under solvent-free conditions. Bull Chem Soc Ethiop. 2012;26:473–8. https://doi.org/10.4314/bcse.v26i3.18.

  • Karimi-Jaberi Z, Ghasemi E. Boric acid-accelerated, one-pot three-component synthesis of imidazo [1, 2-a] pyridine derivatives. Chem Biol Interface. 2017;7:224–9.

    Google Scholar 

  • Karimi-Jaberi Z, Keshavarzi M. Efficient one-pot synthesis of 14-substituted-14H-dibenzo[a,j]xanthenes using boric acid under solvent-free conditions. Chin Chem Lett. 2010;21:547–9. https://doi.org/10.1016/j.cclet.2010.01.014.

  • Karimi-Jaberi, Z.; Mohammadi, K. One-pot synthesis of β-acetamido ketones using boric acid at room temperature. Sci World J. 2012; Article ID: 925617, 4 pages.

    Google Scholar 

  • Karimi-Jaberi Z, Zarei LS. Rapid synthesis of 2-substituted-2, 3-dihydro-4 (1 H)-quinazolinones using boric acid or sodium dihydrogen phosphate under solvent-free conditions. Afr J Chem. 2012;65:36–8.

    Google Scholar 

  • Klyani H, Ghorbani F. Boric acid-catalyzed multi-component reaction for efficient synthesis of 4H-isoxazol-5-ones in aqueous medium. Res Chem Intermed. 2015;41:2653–64. https://doi.org/10.1007/s11164-013-1411-x.

  • Kocienski PJ. Protecting groups. 3rd ed. Stuttgart/New York: Georg Thieme Verlag; 1994. p. 50–71.

    Google Scholar 

  • Kumar A, Saxena D, Gupta MK. Boric acid catalyzed Ugi three-component reaction in aqueous media. RSC Adv. 2013;3:4610–2. https://doi.org/10.1039/c3ra23087b.

  • Kumar V, Singh C, Sharma U, Verma U, Singh B, Kumar N. Silica-supported boric acid catalyzed synthesis of dihydropyrimidin-2-ones, bis(indolyl)methanes, esters and amides. Indian J Chem. 2014a;53B:83–9.

    Google Scholar 

  • Kumar V, Singh C, Sharma U, Verma U, Singh B, Kumar N. Silica-supported boric acid catalyzed synthesis of dihydropyrimidin-2-ones, bis(indolyl)methanes, esters and amides. Indian J Chem. 2014b;53B:83–9.

    Google Scholar 

  • Levonis SM, Pappin BB, Sharp A, Kiefel MJ, Houston TA. Boric acid catalysed methyl esterification of sugar acids. Aust J Chem. 2014;67(3):528–30. https://doi.org/10.1071/CH13459.

    Article  CAS  Google Scholar 

  • Lowrance WW. Boric acid-catalysed esterification of phenols. Tetrahedron Lett. 1971;37:3453–4. https://doi.org/10.1016/S0040-4039(01)97203-X.

    Article  CAS  Google Scholar 

  • Lu J, Bai Y. Catalysis of the Biginelli reaction by ferric and nickel chloride hexahydrates. One-pot synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones. Synthesis. 2002:466–70. https://doi.org/10.1055/s-2002-20956.

  • Maki T, Ishihara K, Yamamoto H. N-Alkyl-4-boronopyridinium halides versus boric acid as catalysts for the esterification of α-hydroxycarboxylic acids. Org Lett. 2005;7(22):5047–50. https://doi.org/10.1021/ol052061d.

    Article  CAS  PubMed  Google Scholar 

  • Maras N, Kocevar M. Boric acid‐catalyzed direct condensation of carboxylic acids with benzene‐1,2‐diamine into benzimidazoles. Hel Chimica Acta. 2011;94:1860–74. https://doi.org/10.1002/hlca.201100064.

  • Marsi KL, Wilen SHJ. Boric acid: A highly efficient catalyst for transamidation of carboxamides with amines. Chem Edu. 1963;40:214–5. https://doi.org/10.1021/ed040p214.

  • Meshram HM, Rao NN, Kumar GS. Boric acid–mediated mild and efficient friedel–crafts alkylation of indoles with nitro styrenes. Synth Commun. 2010;40:3496–500. https://doi.org/10.1080/00397910903457316.

  • Meshram HM, Kumar AS, Kumar GS, Sweta A, Reddy BC, Ramesh P. Boric acid promoted an efficient and practical synthesis of fused pyrimidines in aqueous media. Der Pharm Chemica. 2012;4:956–60.

    Google Scholar 

  • Meshram HM, Rao NN, Thakur PB, Reddy BC, Ramesh P. Boric acid promoted convenient synthesis of bis (indolyl) methane in aqueous medium. Indian J Chem Section B Org Med Chem. 2013;52(6):814–7.

    Google Scholar 

  • Mukhopadhyay C, Datta A, Butcher RJ. Highly efficient one-pot, three-component Mannich reaction catalysed by boric acid and glycerol in water with major ‘syn’diastereoselectivity. Tetrahedron Lett. 2009;50:4246–50. https://doi.org/10.1016/j.tetlet.2009.04.135.

  • Mylavarapu RK, Kolla N, Veeramalla R, Koilkonda P, Bhattacharya A, Bandichhor R. Boric acid catalysed amidation in the synthesis of active pharmaceutical ingredients. Org Process Res Dev. 2007;11(6):1065–8. https://doi.org/10.1021/op700098w.

    Article  CAS  Google Scholar 

  • Nath J, Chaudhuri MK. Boric acid catalyzed bromination of a variety of organic substrates: an eco-friendly and practical protocol. Green Chem Lett Rev. 2008;1:223–30. https://doi.org/10.1080/17518250902758887.

  • Nguyen TB, Sorres J, Tran MQ, Ermolenko L, Al-Mourabit A. Boric Acid: A Highly Efficient Catalyst for Transamidation of Carboxamides with Amines. Org Lett. 2012;14:3202–5. https://doi.org/10.1021/ol301308c.

  • Offenhauer RD, Nelsen SF. Aldehyde and ketone condensation reactions catalysed by boric acid. J Org Chem. 1968 Feb;33(2):775–7. https://doi.org/10.1021/jo01266a059.

    Article  CAS  Google Scholar 

  • Ouellette RJ, Rawn JD. 1-structure and bonding in organic compounds. Organic chemistry. Boston: Elsevier; 2014. p. 1–39.

    Google Scholar 

  • Pal R, Mandal TK, Mallik AK. Base-catalysed cyclocondensation of α, α'-bis (arylmethylene) cyclohexanones with thiourea: formation of E-8-(arylmethylene)-4-aryl-1, 2, 3, 4, 5, 6, 7, 8-octahydrobenzo [d] pyrimidine-2-thiones. J Indian Chem Soc. 2009;86(4):402–5.

    CAS  Google Scholar 

  • Pal R, Mandal TK, Samanta S, Mallik AK. An Efficient Synthesis of E-2-Amino-4-aryl-8-(arylmethylene)-5, 6, 7, 8-tetrahydrobenzo [d] pyrimidines and Their Lower Analogues. ChemInform. 2011;42:711–5.

    Google Scholar 

  • Pratibha K. Boric acid Catalyzed efficient Synthesis of Dipyrromethanes in Water. Res J Chem Sci. 2014;4:58–62.

    Google Scholar 

  • Rajale T, Patil DDJ. Boric acid catalysed synthesis of Benzimidazoles in aqueous medium. Pharm Sci Biosci Res. 2015;5:479–86.

    Google Scholar 

  • Reddy TRK, Mutter R, Heal W, Guo K, Gillet VJ, Pratt S, Chen BJ. Library design, synthesis, and screening: pyridine dicarbonitriles as potential prion disease therapeutics. Med Chem. 2006;49:607–15. https://doi.org/10.1021/jm050610f.

  • Rostami A, Akradi J, Ahmad-Jangi FJ. Boric acid as cost-effective and recyclable catalyst for trimethylsilyl protection and deprotection of alcohols and phenols. Bra Chem Soc. 2010;21:1587–92. https://doi.org/10.1590/S0103-50532010000800026.

  • Roth T, Morningstar ML, Boyer PL, Hughes SH, Buckheit W Jr, Michejda CJJ. Synthesis and biological activity of novel nonnucleoside inhibitors of HIV-1 reverse transcriptase. 2-Aryl-substituted benzimidazoles. Med Chem. 1997;40:4199–207. https://doi.org/10.1021/jm970096g.

  • Sabatini MT, Boulton LT, Sheppard TD. Borate esters: simple catalysts for the sustainable synthesis of complex amides. Sci Adv. 2017;3(9):e1701028. https://doi.org/10.1126/sciadv.1701028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabatini MT, Boulton LT, Sneddon HF, Sheppard TD. A green chemistry perspective on catalytic amide bond formation. Nat Catal. 2019;2(1):10. https://doi.org/10.1038/s41929-018-0211-5.

    Article  CAS  Google Scholar 

  • Sarada T, Kobayashi F, Sakai N, Konakahara T. An unprecedented approach to 4,5-disubstituted pyrimidine derivatives by a ZnCl2-catalyzed three-component coupling reaction. Org Lett. 2009;11:2161–4.

    Google Scholar 

  • Schutz H. Benzodiazepines, vol. 2. Heidelberg: Springer; 1982. p. 240. https://doi.org/10.1007/978-3-642-68426-5.

    Book  Google Scholar 

  • Shaikh KA, Kande SR, Khillare CB. Boric acid catalyzed one-pot synthesis of [1, 2, 4] triazolo quinazolinone Derivatives. IOSR J Appl Chem. 2014;7:54–8.

    Google Scholar 

  • Shelke KF, Sapkal SB, Sonar SS, Madje BR, Shingate BB, Shingare MS. An efficient synthesis of 2, 4, 5-triaryl-1H-imidazole derivatives catalyzed by boric acid in aqueous media under ultrasound-irradiation. Bull Kor Chem Soc. 2009;30:1057–60. https://doi.org/10.5012/bkcs.2009.30.12.2883.

  • Shinde PV, Sonar SS, Shingate BB, Shingare MS. Boric acid catalyzed convenient synthesis of 2-amino-3,5-dicarbonitrile-6-thio-pyridines in aqueous media. Tetrahedron Lett. 2010;51:1309–12. https://doi.org/10.1016/j.tetlet.2009.12.146.

  • Shiri M, Zolfigol MA, Kruger HG, Tanbakouchian Z. Bis-and trisindolylmethanes (BIMs and TIMs). Chem Rev. 2009;110(4):2250–93. https://doi.org/10.1021/cr900195a.

    Article  CAS  Google Scholar 

  • Singhal A, Singh S, Chauhan SMS. Synthesis of dipyrromethanes in aqueous media using boric acid. Arkivoc. 2016;vi:144–51. https://doi.org/10.24820/ark.5550190.p009.847.

  • Stapp PRJ. Boric acid catalyzed Tishchenko reactions. Org Chem. 1973;38:1433–4. https://doi.org/10.1021/jo00947a049.

  • Tang Y, Oppenheimer J, Song Z, You L, Zhang X, Hsung RP. Strategies and approaches for constructing 1-oxadecalins. Tetrahedron. 2006;62:10785–813. https://doi.org/10.1016/j.tet.2006.08.054.

  • Tu S, Fang F, Miao C, Jiang H, Feng Y, Shi D, Wang X. One-pot synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones using boric acid as catalyst. Tetrahedron Lett. 2003 Aug 4;44(32):6153–5. https://doi.org/10.1016/S0040-4039(03)01466-7.

    Article  CAS  Google Scholar 

  • Tu S-J, Zhu X-T, Fang F, Zhang X-J, Zhu S-L, Li T-J, Shi D-Q, Wang X-S, Ji S-J. One‐pot Synthesis of Bis (dihydropyrimidinone‐4‐yl) benzene Using Boric Acid as a Catalyst Chin J Chem. 2005;23:596–8. https://doi.org/10.1002/cjoc.200590596.

  • Wang SY, Ji SJ, Loh TP. The Michael addition of indole to α, β-unsaturated ketones catalysed by iodine at room temperature. Synlett. 2003;2003(15):2377–9. https://doi.org/10.1055/s-2003-42105.

    Article  CAS  Google Scholar 

  • Yadav JS, Gupta MK, Jain R, Yadav NN, Reddy BVS. A practical synthesis of bis(indolyl)methanes employing boric acid. Monatsh Chem. 2010;141:1001–4. https://doi.org/10.1007/s00706-010-0355-8.

  • Zhou X, Zhang MY, Gao ST, Ma JJ, Wang C, Liu C. An efficient synthesis of 1,5-benzodiazepine derivatives catalyzed by boric acid. Chin Chem Lett. 2009;20:905–8. https://doi.org/10.1016/j.cclet.2009.03.033.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pathan, S.K., Mahaparale, P., Deshmukh, S., Une, H., Arote, R., Sangshetti, J. (2020). Boric Acid: A Versatile Catalyst in Organic Synthesis. In: Inamuddin, Asiri, A. (eds) Applications of Nanotechnology for Green Synthesis. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-44176-0_17

Download citation

Publish with us

Policies and ethics