Skip to main content

Industrial Applications of Green Solvents for Sustainable Development of Technologies in Organic Synthesis

  • Chapter
  • First Online:
Applications of Nanotechnology for Green Synthesis

Abstract

Green chemistry is focused on replacement or reduction of common materials which are the reason of ecosystem damages. Organic solvents are the main culprit of volatile organic compound (VOC) emission into the atmosphere. Therefore, different environmentally friendly solvents have replaced them. Alternative solvents should decrease the negative impact of organic solvents into the environment. Green solvents like water, ionic liquids (ILs), fluorous solvents, supercritical carbon dioxide (SCO2), bio-solvents, and organic carbonates are reviewed in this chapter for organic synthesis. Although water is an ideal medium for plenty of reactions, ionic liquids and fluorous solvents are suitable for reactions which cannot accomplish in supercritical carbon dioxide or water. Reaction rates are so high in supercritical carbon dioxide due to its properties which are intermediate between those of a liquid or gas. While organic carbonates are used for medical, pharmaceutical, and extraction applications, bio-solvents are applied in cleaning agents, cosmetic, and agricultural chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

IL :

Ionic liquid

SCO 2 :

Supercritical carbon dioxide

VOCs :

Volatile organic compounds

References

  • Asiri A, et al. 1, 3-Diethyl-5-(2-methoxybenzylidene)-2-thioxodihydropyrimidine-4, 6 (1H, 5H)-dione. Mol Ther. 2004;2004(1):M359.

    Google Scholar 

  • Bell FW, et al. Phenethylthiazolethiourea (PETT) compounds, a new class of HIV-1 reverse transcriptase inhibitors. 1. Synthesis and basic structure-activity relationship studies of PETT analogs. J Med Chem. 1995;38(25):4929–36.

    CAS  PubMed  Google Scholar 

  • Bonacorso HG, et al. Trifluoromethyl-containing pyrazolinyl (p-tolyl) sulfones: the synthesis and structure of promising antimicrobial agents. J Fluor Chem. 2006;127(8):1066–72.

    CAS  Google Scholar 

  • Breslow R, Groves K, Mayer MU. Antihydrophobic cosolvent effects for alkylation reactions in water solution, particularly oxygen versus carbon alkylations of phenoxide ions. J Am Chem Soc. 2002;124(14):3622–35.

    CAS  PubMed  Google Scholar 

  • Byrne FP, et al. Tools and techniques for solvent selection: green solvent selection guides. Sustain Chem Process. 2016;4(1):7.

    Google Scholar 

  • Calvo-Flores FG, et al. Green and bio-based solvents. Top Curr Chem. 2018;376(3):18.

    Google Scholar 

  • Clark JH. Green chemistry and environmentally friendly technologies. In: Green separation processes: fundamentals and applications. Weinheim: Wiley; 2005. p. 1–18.

    Google Scholar 

  • DeSimone JM. Practical approaches to green solvents. Science. 2002;297(5582):799–803.

    CAS  PubMed  Google Scholar 

  • Dobbs AP, Kimberley MR. Fluorous phase chemistry: a new industrial technology. J Fluor Chem. 2002;118(1–2):3–17.

    CAS  Google Scholar 

  • Gavagan JE, et al. Glyoxylic acid production using microbial transformant catalysts. J Org Chem. 1995;60(13):3957–63.

    CAS  Google Scholar 

  • Gu Y, Jérôme F. Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem Soc Rev. 2013;42(24):9550–70.

    CAS  PubMed  Google Scholar 

  • Hartonen K, Riekkola M-L. Water as the first choice green solvent. In: The application of green solvents in separation processes. Amsterdam: Elsevier; 2017. p. 19–55.

    Google Scholar 

  • Haviv F, et al. 3-[1-(2-Benzoxazolyl) hydrazino] propanenitrile derivatives: inhibitors of immune complex induced inflammation. J Med Chem. 1988;31(9):1719–28.

    CAS  PubMed  Google Scholar 

  • Heravi M, Asadi S, Azarakhshi F. Recent applications of Doebner, Doebner-von Miller and Knoevenagel-Doebner reactions in organic syntheses. Curr Org Synth. 2014;11(5):701–31.

    CAS  Google Scholar 

  • Heydari A, Khaksar S, Tajbakhsh M. Trifluoroethanol as a metal-free, homogeneous and recyclable medium for the efficient one-pot synthesis of α-amino nitriles and α-amino phosphonates. Tetrahedron Lett. 2009;50(1):77–80.

    CAS  Google Scholar 

  • Heyn RH. Organic carbonates. In: Carbon dioxide utilisation. Amsterdam: Elsevier; 2015. p. 97–113.

    Google Scholar 

  • Horváth IT. Fluorous biphase chemistry. Acc Chem Res. 1998;31(10):641–50.

    Google Scholar 

  • Horváth IT, Rábai J. Facile catalyst separation without water: fluorous biphase hydroformylation of olefins. Science. 1994;266(5182):72–5.

    PubMed  Google Scholar 

  • Jessop PG. Searching for green solvents. Green Chem. 2011;13(6):1391–8.

    CAS  Google Scholar 

  • Kidwai M. Dry media reactions. Pure Appl Chem. 2001;73:147.

    CAS  Google Scholar 

  • Koeken AC, et al. Selectivity of rhodium-catalyzed hydroformylation of 1-Octene during batch and semi-batch reaction using Trifluoromethyl-substituted ligands. Adv Synth Catal. 2008;350(1):179–88.

    CAS  Google Scholar 

  • Kumar A, Maurya RA. Synthesis of polyhydroquinoline derivatives through unsymmetric Hantzsch reaction using organocatalysts. Tetrahedron. 2007;63(9):1946–52.

    CAS  Google Scholar 

  • Laird T. Organic synthesis in water. Edited by Paul A Grieco. Blackie/Thomson Science: London, UK, 1998. 320 pp.£ 75. ISBN 0 7514 0410 1: ACS Publications; 1998.

    Google Scholar 

  • Leitner W. Supercritical carbon dioxide as a green reaction medium for catalysis. Acc Chem Res. 2002;35(9):746–56.

    CAS  PubMed  Google Scholar 

  • Li C-J, Trost BM. Green chemistry for chemical synthesis. Proc Natl Acad Sci. 2008;105(36):13197–202.

    CAS  PubMed  Google Scholar 

  • Li M, et al. Multicomponent reactions of 1, 3-cyclohexanediones and formaldehyde in glycerol: stabilization of paraformaldehyde in glycerol resulted from using dimedone as substrate. Adv Synth Catal. 2010;352(2–3):519–30.

    CAS  Google Scholar 

  • Lomba L, et al. Physicochemical properties of green solvents derived from biomass. Green Chem. 2011;13(8):2062–70.

    CAS  Google Scholar 

  • Marciniak A. The solubility parameters of ionic liquids. Int J Mol Sci. 2010;11(5):1973–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marion P, et al. Sustainable chemistry: how to produce better and more from less? Green Chem. 2017;19(21):4973–89.

    CAS  Google Scholar 

  • Matsui HKK, Hayashi H. Aldol reactions of propanal using MgO catalyst in supercritical CO2. In: Studies in surface science and catalysis. Amsterdam: Elsevier; 2004. p. 363–8.

    Google Scholar 

  • Melo CI, et al. Advantageous heterogeneously catalysed hydrogenation of carvone with supercritical carbon dioxide. Green Chem. 2011;13(10):2825–30.

    CAS  Google Scholar 

  • Otto S, Engberts JB. Hydrophobic interactions and chemical reactivity. Org Biomol Chem. 2003;1(16):2809–20.

    CAS  PubMed  Google Scholar 

  • Oyama K. In: Collins AN, Sheldrake GN, Crosby J, editors. Chirality in Industry. Chichester: Wiley; 1992.

    Google Scholar 

  • Ren W, Rutz B, Scurto AM. High-pressure phase equilibrium for the hydroformylation of 1-octene to nonanal in compressed CO2. J Supercrit Fluids. 2009;51(2):142–7.

    CAS  Google Scholar 

  • Roukoss C, et al. Emerging strategies in catalysis. Dalton Trans. 2007;5572:5581.

    Google Scholar 

  • Sahle-Demessie E, Devulapelli VG, Hassan AA. Hydrogenation of anthracene in supercritical carbon dioxide solvent using Ni supported on Hβ-zeolite catalyst. Catalysts. 2012;2(1):85–100.

    CAS  Google Scholar 

  • Schaeffner B, et al. Organic carbonates as alternative solvents for palladium-catalyzed substitution reactions. ChemSusChem. 2008;1(3):249–53.

    CAS  Google Scholar 

  • Schäffner B, et al. Rhodium-catalyzed asymmetric hydrogenation with self-assembling catalysts in propylene carbonate. Tetrahedron Lett. 2008;49(5):768–71.

    Google Scholar 

  • Schäffner B, et al. Organic carbonates as alternative solvents for asymmetric hydrogenation. Chirality. 2009;21(9):857–61.

    PubMed  Google Scholar 

  • Shanab K, et al. Green solvents in organic synthesis: an overview. Curr Org Chem. 2013;17(11):1179–87.

    CAS  Google Scholar 

  • Shapiro N, Vigalok A. Highly efficient organic reactions “on water”, “in water”, and both. Angew Chem Int Ed. 2008;47(15):2849–52.

    CAS  Google Scholar 

  • Sheldon RA. Green solvents for sustainable organic synthesis: state of the art. Green Chem. 2005;7(5):267–78.

    CAS  Google Scholar 

  • Suresh, Sandhu JS. Recent advances in ionic liquids: green unconventional solvents of this century: part I. Green Chem Lett Rev. 2011a;4(4):289–310.

    CAS  Google Scholar 

  • Suresh, Sandhu JS. Recent advances in ionic liquids: green unconventional solvents of this century: part II. Green Chem Lett Rev. 2011b;4(4):311–20.

    CAS  Google Scholar 

  • Tan J-N, Li M, Gu Y. Multicomponent reactions of 1, 3-disubstituted 5-pyrazolones and formaldehyde in environmentally benign solvent systems and their variations with more fundamental substrates. Green Chem. 2010;12(5):908–14.

    CAS  Google Scholar 

  • ten Brink G-J, Arends IW, Sheldon RA. Green, catalytic oxidation of alcohols in water. Science. 2000;287(5458):1636–9.

    PubMed  Google Scholar 

  • Tsuji K, Ishikawa H. Synthesis and anti-pseudomonal activity of new 2-isocephems with a dihydroxypyridone moiety at C-7. Bioorg Med Chem Lett. 1994;4(13):1601–6.

    CAS  Google Scholar 

  • Vollmer C, Thomann R, Janiak C. Organic carbonates as stabilizing solvents for transition-metal nanoparticles. Dalton Trans. 2012;41(32):9722–7.

    CAS  PubMed  Google Scholar 

  • Wegman MA, et al. Towards biocatalytic synthesis of β-lactam antibiotics. Adv Synth Catal. 2001;343(6–7):559–76.

    CAS  Google Scholar 

  • Wu T, Han B. Supercritical carbon dioxide (CO 2) as green solvent. In: Innovations in green chemistry and green engineering. New York: Springer; 2013. p. 297–326.

    Google Scholar 

  • Xin-hua Y, et al. Friedel–Crafts acylation of anthracene with oxalyl chloride catalyzed by ionic liquid of [bmim] cl/AlCl3. Chem Eng J. 2009;146(2):266–9.

    Google Scholar 

  • Yuan Y, et al. Enzyme-catalyzed Michael addition for the synthesis of warfarin and its determination via fluorescence quenching of L-tryptophan. Spectrochim Acta A Mol Biomol Spectrosc. 2017;176:183–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Rahimpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meshksar, M., Afshariani, F., Rahimpour, M.R. (2020). Industrial Applications of Green Solvents for Sustainable Development of Technologies in Organic Synthesis. In: Inamuddin, Asiri, A. (eds) Applications of Nanotechnology for Green Synthesis. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-44176-0_16

Download citation

Publish with us

Policies and ethics