Skip to main content

Green Synthesis of Biodiesel Using Microbial Lipases

  • Chapter
  • First Online:
Applications of Nanotechnology for Green Synthesis

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Biodiesel, also called as fatty acid methyl esters (FAME), is a potential substitute to fossil-based diesel fuel owing to biodegradability, lesser toxicity, and reduced greenhouse gas emissions. Biodiesel is a renewable fuel and can be used in blended form or as direct substitute for petro-diesel in locomotive engines. Scientists are introducing many techniques for the biodiesel production and to convert the feedstock into biodiesel. Out of all the reported methods of conversion, transesterification has been the most preferred method. Currently, transesterification has been carried out by using chemical catalysts, i.e., acid and alkaline catalysts for which downstreaming becomes difficult and expensive. So enzymatic catalysts, i.e., microbial lipases, are preferred to cope with this problem. Moreover, different reaction conditions can be optimized to achieve highest yields of biodiesel. However, the biodiesel production cost is a little higher in comparison to fossil fuels which is a big hurdle in its commercialization. This problem can be solved by using immobilized microbial lipases as catalysts and nonconventional oils, i.e., algal and yeast oils as feedstocks for conversion into the biodiesel. Utilizing the nonconventional oils is also preferred because it will also reduce the clash between bioenergy and food production, also called as food vs fuel debate. The reason behind this debate is that many conventional food-based oils are utilized as feedstocks for the production of biodiesel. The utilization of lipase as biocatalyst after immobilization also gains huge attention as the synthesis of biodiesel is “greener.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla IIH, Khaddor M, Boussab A, Garrouj DE, Souhial B. Physical and chemical characteristics of olive oils from cooperatives for olive growers in the North of Morocco. Intl J Basic Appl Sci. 2014;14:02.

    Google Scholar 

  • Abeda KA, Gadb MS, El Morsic AK, Sayedd MM, Abu Elyazee S. Effect of biodiesel fuels on diesel engine emissions. Egypt J Pet. 2019;28:183–8.

    Google Scholar 

  • Ageitos JM, Vallejo JA, Crespo PV, Villa TG. Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol. 2011;90(4):1219–27.

    CAS  PubMed  Google Scholar 

  • Ahmad M, Ahmed S, Hassan FU. Base catalyzed transesterification of sunflower oil biodiesel. Afr J Biotechnol. 2010;9(50):8630–5.

    CAS  Google Scholar 

  • Ahmad F, Khan AU, Yasar A. Transesterification of oil extracted from different species of algae for biodiesel production. Afr J Environ Sci Technol. 2013;7(6):358–64.

    CAS  Google Scholar 

  • Ahmed AS, Khan S, Hamdan S, Rahman R, Kalam A, Masjuki H, Mahli TMI. Biodiesel production from macro algae as a green fuel for diesel engine. 2012

    Google Scholar 

  • Akhabue CE, Okwundu OS. Monitoring the transesterification reaction of castor oil and methanol by ultraviolet visible spectroscopy. Biofuels. 2017;(10):729–736.

    Google Scholar 

  • Alamu OJ, Akintola TA, Enweremadu CC, Adeleke CE. Characterization of palm-kernel oil biodiesel produced through NaOH-catalysed transesterification process. Sci Res Essay. 2008;3(7):308–11.

    Google Scholar 

  • Ali Y, Hanna M, Cuppett S. Fuel properties of tallow and soybean oil esters. J Am Oil Chem Soc. 1995;72:1557–64.

    CAS  Google Scholar 

  • Althomali A. Effects of mustard oil on oxidative stress parameters of male mice. Adv Food Sci. 2015;36(2):78–85.

    Google Scholar 

  • Al-Zuhair S, Ling FW, Jun LS. Proposed kinetic mechanism of the production of biodiesel from palm oil using lipase. Process Biochem. 2007;42:951–60.

    CAS  Google Scholar 

  • Ansari SA, Husain Q. Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv. 2012;30:512–23.

    CAS  PubMed  Google Scholar 

  • Armah P, Archer A, Philips GC. Drives leading to higher food prices: biofuels are not the main factor. In: Global impact on renewable energy production agriculture and technological advancements. New York: Springer; 2011. p. 19–36.

    Google Scholar 

  • Arumugam A, Ponnusami V. Production of biodiesel by enzymatic transesterification of waste sardine oil and evaluation of its engine performance. 2017;3(2017):1–18.

    Google Scholar 

  • Ashokkumar C, Murugan B, Baskaran D, Veerapandian V. Physicochemical properties of olive oil and its stability at different storage temperatures. Intl J Chem Stud. 2018;6(2):1012–7.

    Google Scholar 

  • Aydeniz B, Yılmaz E, Ok S. Cold pressed versus refined winterized corn oils: quality, composition and aroma. Grasas Aceites. 2017;68(2):194.

    Google Scholar 

  • Balat M, Balat H. Progress in biodiesel processing. Appl Energy. 2010;87(6):1815–35.

    CAS  Google Scholar 

  • Barku VYA, Nyarko HD, Dordun P. Studies on the physicochemical characteristics, microbial load and storage stability of oil from Indian almond nut Terminalia Catappa L. Food Sci Qual Manag. 2012;8:2012.

    Google Scholar 

  • Bharathiraja B, Chakravarthy M, Kumar RR, Yuvaraj D, Jayamuthunagai J, Kumar RP, Palani S. Biodiesel production using chemical and biological methods–a review of process, catalyst, acyl acceptor, source and process variables. Renew Sust Energ Rev. 2014;38:368–82.

    CAS  Google Scholar 

  • Borhade SS. Chemical composition and characterization of hemp seed oil and essential fatty acids by HPLC method. Arch Appl Sci Res. 2013;5(1):5–8.

    CAS  Google Scholar 

  • Casimir C, Akoh C, Chang SW, Lee GC, Shaw JF. Enzymatic approach to biodiesel production. J Agric Food Chem. 2007;55(22):8995–9005.

    Google Scholar 

  • Chen YZ, Yang CT, Ching CB, Xu R. Immobilization of lipases on hydrophobilized zirconia nanoparticles: highly enantioselective and reusable biocatalysts. Langmuir. 2008;24(16):8877–84.

    CAS  PubMed  Google Scholar 

  • Chen JZ, Wang S, Zhou B, Dai L, Liu D, Du D. A robust process for lipase-mediated biodiesel production from microalgae lipid. RSC Adv. 2016;54:2016.

    Google Scholar 

  • Chincholkar SP, Srivastava S, Rehman A, Dixit S, Lanjewar A. Biodiesel as an alternative fuel for pollution control in diesel engine. Asian J Exp Sci. 2005;19(2):13–22.

    CAS  Google Scholar 

  • Colla LM, Ficanha AMM, Rizzardi J, Bertolin TE, Reinehr CO, Costa JAV. Production and characterization of lipases by two new isolates of Aspergillus through solid-state and submerged fermentation. BioMed Res Intl. 2015;2015:1–9.

    Google Scholar 

  • Cui T, Zhang J, Wang J, Cui F, Chen W, Xu F, Yang B. CdS nanoparticle/polymer composite shells grown on silica nanospheres by atomic transfer radical polymerization. Adv Funct Mater. 2005;15(3):481–6.

    CAS  Google Scholar 

  • Demirbas A. Biodiesel: a realistic fuel alternative for diesel engines. London: Springer Verlag; 2008.

    Google Scholar 

  • Demirbas A. Progress and recent trends in biodiesel fuels. Energy Conver Manag. 2009a;50(1):14–34.

    CAS  Google Scholar 

  • Demirbas A. Political, economic and environmental impacts of biofuels: a review. Appl Energy. 2009b;86:S108–17.

    CAS  Google Scholar 

  • Demirbas A, Bafail A, Ahmad W, Sheikh M. Biodiesel production from non-edible plant oils. Energy Explor Exploit. 2016;34(2):290–318.

    CAS  Google Scholar 

  • Demirbas A, Bafail A, Ahmad W, Sheikh M. Biodiesel production from non-edible plant oils. Energy Explor Exploit. 2015;34(2):290–318.

    Google Scholar 

  • Earle MJ, Plechkova NV, Seddon KR. Green synthesis of biodiesel using ionic liquids. Pure Appl Chem. 2009;81(11):2045–57.

    CAS  Google Scholar 

  • Eevera T, Rajendran K, Saradha S. Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions. Renew Energy. 2009;34:762–5.

    CAS  Google Scholar 

  • Enweremadu CC, Mbarawa MM. Technical aspects of production and analysis of biodiesel from used cooking oil—a review. Renew Sustain Energy Rev. 2009;13(9):2205–24.

    CAS  Google Scholar 

  • Es I, Vieira JDG, Amaral AC. Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol. 2015;99(5):2065–82.

    CAS  PubMed  Google Scholar 

  • Fjerbaek L, Christensen VK, Norddahl B. A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng. 2009;102:1298–315.

    CAS  PubMed  Google Scholar 

  • Folaranmi J. Production of Biodiesel (B100) from Jatropha oil using sodium hydroxide as catalyst. J Pet Eng. 2013:1–7.

    Google Scholar 

  • Freedman B, Rayden OB, Everett HP. Transesterification kinetics of soybean oil. JAOCS. 1986;63:1275–380.

    Google Scholar 

  • Freedman BH, Pryde EH, Mounts TL. Variable affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc. 1984;61(10):1638–43.

    CAS  Google Scholar 

  • Fu J, Reinhold J, Woodbury NW. Peptide-modified surfaces for enzyme immobilization. PLoS One. 2011;6:e18692.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda H, Kondo A, Noda H. Review biodiesel production by transesterification of oils. J Biosci Bioeng. 2001;92(5):405–16.

    CAS  PubMed  Google Scholar 

  • Gebremariam SN, Marchetti JM. Biodiesel production technologies: review. AIMS Energy. 2017;5(3):425–57.

    CAS  Google Scholar 

  • Ghadge SV, Raheman H. Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass Bioenergy. 2005;28(6):601–5.

    CAS  Google Scholar 

  • Ghani NAA, Channip AA, Hwa PCH, Ja’afar F, Yasin HM, Usman A. Physicochemical properties, antioxidant capacities, and metal contents of virgin coconut oil produced by wet and dry processes. Food Sci Nutr. 2018;6(5):1298–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grosova Z, Rosenberg M, Rebros M, Sipocz M, Sedlackova B. Entrapment of beta-galactosidase in polyvinylalcohol hydrogel. Biotechnol Lett. 2008;30:763–7.

    CAS  PubMed  Google Scholar 

  • Gude VG, Patil P, Guerra EM, Deng S, Nirmalakhandan S. Microwave energy potential for biodiesel production. Sustain Chem Proc. 2013;1:5.

    Google Scholar 

  • Gupta MN, Kaloti M, Kapoor M, Solanki K. Nanomaterials as matrices for enzyme immobilization. Artif Cells Blood Substit Immobil Biotechnol. 2011;39:98–109.

    CAS  PubMed  Google Scholar 

  • Haas MJ, McAloon AJ, Yee WC, Foglia TA. A process model to estimate biodiesel production costs. Bioresour Technol. 2006;97(4):671–8.

    CAS  PubMed  Google Scholar 

  • Hama S, Kondo A. Enzymatic biodiesel production: an overview of potential feedstock and process development. Bioresour Technol. 2013;135:386–95.

    CAS  PubMed  Google Scholar 

  • Hama S, Tamalampudi S, Fukumizu T. Lipase localization in Rhizopus oryzae cells immobilized within biomass support particles for use as whole-cell biocatalysts in biodiesel-fuel production. J Biosci Bioeng. 2006;101(4):328–33.

    CAS  PubMed  Google Scholar 

  • Harvey AP, Khurana R, Lee R. In-situ transesterification of jatropha seeds to produce biodiesel using alcohol mixture. Presented at: 4th International Biofuels Conference. New Dehli, India; 2007. p 1–2

    Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Pro Nat Acad Sci USA. PNAS. 2006;103(30):11206–10.

    CAS  PubMed  Google Scholar 

  • Hossain ABMS. Alkaline and acid catalyzed transesterification bioprocess in biodiesel preparation from fresh water algae. Asian J Biochem. 2015;10(5):205–13.

    CAS  Google Scholar 

  • Hussain R, Asadullah AH, Sattar S, Zeb M, Hussain A, Nafees M. Physico-chemical properties and assessment of edible oil potential of peanuts grown in Kurram Agency, Parachinar. Pak J Anal Environ Chem. 2015;16(1):45–51.

    CAS  Google Scholar 

  • Hwang ET, Gu MB. Enzyme stabilization by nano/microsized hybrid materials. Eng Life Sci. 2013;13:49–61.

    CAS  Google Scholar 

  • Japir AA, Salimon J, Derawi D, Bahadi M, Shujaa SA, Yusop MR. Physicochemical characteristics of high free fatty acids crude palm oil. EDP Sci. 2017;24(5):1–9.

    Google Scholar 

  • Jegannathan KR, Abang S. Production of biodiesel using immobilized lipase—a critical review. Crit Rev Biotechnol. 2008;28:253–64.

    CAS  PubMed  Google Scholar 

  • Jibril M, Joel AS, Edith U, Audu AA. Production and characterization of biodiesel from Jatropha oil and neem oil. Intl J Emerg Trends in Eng Dev. 2012;2(2):313–320.

    Google Scholar 

  • Kankia AI, Abubaka AM, Ishaq DU. Production, characterization and process variables of biodiesel from non-edible plant oil (Neem & Soapnut): a review. Intl J Sci Res. 2012;3(11):456–60.

    Google Scholar 

  • Karmakar R, Kundu K, Rajor A. Fuel properties and emission characteristics of biodiesel produced from unused algae grown in India. Pet Sci. 2018;15(2):385–95.

    CAS  Google Scholar 

  • Karmee SK, Chadha A. Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresour Technol. 2005;96(2005):1425–9.

    CAS  PubMed  Google Scholar 

  • Kim J, Grate JW. Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Lett. 2003;3(9):1219–22.

    CAS  Google Scholar 

  • Knothe G, Gerpen V, Krahl JHJ. The biodiesel handbook. Champaign: AOCS Press [CRC Press]; 2005.

    Google Scholar 

  • Knothe G. Analytical methods used in the production and fuel quality assessment of biodiesel. Trans ASAE. 2001;44(2):193–200.

    CAS  Google Scholar 

  • Kushak R, Drapeau CJ, Cott EMV, Winter HH. Favorable effects of blue-green algae Aphanizomenon flosaquae on rat plasma lipids. J Am Nutraceutical Assoc. 2000;2(3):59–65.

    Google Scholar 

  • Lee CK, Duong ANA. Enzyme immobilization on nanoparticles: recent applications. Emerg Areas Bioeng. 2018:67–80.

    Google Scholar 

  • Lei J, Fan J, Yu C, Zhang L, Jiang S, Tu B, Zhao D. Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace. Micropor Mesopor Mat. 2004;73:121–8.

    CAS  Google Scholar 

  • Leung DYC, Guo Y. Transesterification of neat and used frying oil: optimization for biodiesel production. Fuel Process Technol. 2006;87(10):883–90.

    CAS  Google Scholar 

  • Liu M, Niu S, Chunmei L, Li H, Huo MJ. A study on the catalytic performance of carbide slag in transesterification and the calculation of kinetic parameters. Sci China Technol Sci. 2014;58(2):258–65.

    Google Scholar 

  • Liu CZ, Wang F, Stiles AR, Guo C. Ionic liquids for biofuel production: opportunities and challenges. Appl Energy. 2012;92:406–14.

    CAS  Google Scholar 

  • Ma FCLD, Hanna MA. The effects of catalyst, free fatty acids, and water on transesterification of beef tallow. Trans Am Soc Agric Eng. 1998;41:1261–4.

    CAS  Google Scholar 

  • Madhuri RVS, Rao PV, Alekhya KRM, Kumari AS. Properties of vegetable oils and their influence on performance and exhaust emissions of di-diesel engine- a review. Intl J Mech Eng Technol. 2015;6(11):89–101.

    Google Scholar 

  • Makni M, Haddar A, Fraj AB, Zeghal N. Physico-chemical properties, composition, and oxidative stability of olive and soybean oils under different conditions. Intl J Food Prop. 2015;18:194–204.

    CAS  Google Scholar 

  • Mathiyazhagan M, Ganapathi A. Factors affecting biodiesel production. Res Plant Biol. 2011;1(2):01–5.

    Google Scholar 

  • Mukhtar H, Khursheed S, Haq I, Mumtaz MW, Rashid U, Resayes SIA. Optimization of lipase biosynthesis from Rhizopus oryzae for biodiesel production using multiple oils. Chem Eng Technol. 2016;39:9.

    Google Scholar 

  • Nasreen S, Nafees M, Qureshi LA, Asad MS, Sadiq A, Ali SD. Review of catalytic transesterification methods for biodiesel production. In: Biofuels- state of development. London: InTech; 2012. p. 93–119.

    Google Scholar 

  • Nie K, Xie F, Tian FW, Tan T. Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. J Mol Catal B Enzym. 2006;43(1–4):142–7.

    CAS  Google Scholar 

  • Niehus X, Godoy LC, Valadez FJR, Sandoval G. Evaluation of Yarrowia lipolytica oil for biodiesel production: land use, oil yield, carbon and energy balance. J Lipids. 2018;2018:1–6.

    Google Scholar 

  • Pavlidis I, Tsoufis T, Enotiadis A, Gournis D, Stamatis H. Functionalized multi wall carbon nanotubes for lipase immobilization. Adv Eng Mater. 2010;12(5):B179–83.

    Google Scholar 

  • Park EY, Mori M. Kinetic study of esterification of rapeseed oil contained in waste activated bleaching earth using Candida rugosa lipase in organic solvent system. J Mol Catal B Enzym. 2005;37:95–100.

    CAS  Google Scholar 

  • Patel NK, Nagar P, Shah SN. Identification of non-edible seeds as potential feedstock for the production and application of bio-diesel. Energy Power. 2013;3(4):67–78.

    Google Scholar 

  • Pitat B, Zadernowski R. Physicochemical properties of linseed oil and flour. Pol J Nat Sci. 2010;25(1):106–13.

    Google Scholar 

  • Rashid U, Anwar F. Production of biodiesel through optimized alkaline catalyzed transesterification of rapeseed oil. Fuel. 2008;87:265–73.

    CAS  Google Scholar 

  • Roiaini M, Ardiannie T, Norhayati H. Physicochemical properties of canola oil, olive oil and palm olein blends. Intl Food Res J. 2015;22(3):1227–33.

    CAS  Google Scholar 

  • Roncero JM, Alvarez-Ortí M, Pardo-Gimenez A, Gomez R, Rabadan A, Pardo JE. Virgin almond oil: extraction methods and composition. Grasas Aceites. 2014;67(3):1–9.

    Google Scholar 

  • Samuel CB, Brine KDD, Joy EV. Physicochemical properties and fatty acid profile of shea butter and fluted pumpkin seed oil, a suitable blend in bakery fat production. Intl J Nutr Food Sci. 2017;6(3):122–8.

    Google Scholar 

  • Santomauro F, Whiffin F, Scott RJ, Chuck C. Low cost lipid production by oleaginous yeast cultured in non sterile conditions using model waste resources. Biotechnol Biofuels. 2014;7(34):34–43.

    Google Scholar 

  • Sayyed SR, Gitte BM, Joshi SD, Dharmadhikari HM. Characterization of biodiesel: a review. Intl J Eng Res Technol. 2013;2(10):2077–82.

    Google Scholar 

  • Seneviratne K, Jayathilaka N. Coconut oil: chemistry and nutrition. Battaramulla: Lakva Publishers; 2016.

    Google Scholar 

  • Singh G, Yusup S, Wai CK. Physicochemical properties of crude Rubber seed oil for biogasoline production. Procedia Eng. 2016:426–31.

    Google Scholar 

  • Siqueira SF, Francisco CE, Queiroz MI, De Menezes CR, Zepka LQ, Jacob-Lopes E. Third generation biodiesel production from microalgae. Phormidium Autumnale. 2016;33(3):427–33.

    CAS  Google Scholar 

  • Sitepu IR, Jin M, Fernandez JE, Sousa LC, Balan V, Mills LB. Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn Stover. Appl Microbiol Biotechnol. 2014;98(17):7645–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skowyra M, Falguera V, Azman NAM, Segovia F, Almajano MP. The effect of Perilla frutescens extract on the oxidative stability of model food emulsions. Antioxidants. 2014;3:38–54.

    PubMed  PubMed Central  Google Scholar 

  • Spahn C, Minteer SD. Enzyme immobilization in biotechnology. Recent Pat Eng. 2008;2:195–200.

    CAS  Google Scholar 

  • Srivastava PK, Verma M. Methyl ester of karanja oil as an alternative renewable source energy. Fuel. 2008;87(8):1673–7.

    CAS  Google Scholar 

  • Thirumarimurugan M, Sivakumar VM, Xavier AM, Prabhakaran D, Kannadasan T. Preparation of biodiesel from sunflower oil by transesterification. Intl J Biosci Biochem Bioinform. 2012;2(6):441–4.

    Google Scholar 

  • Verma ML, Barrow CJ, Puri M. Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl Microbiol Biotechnol. 2013;97:23–39.

    CAS  PubMed  Google Scholar 

  • Wahlen D, Morgan R, McCurdy T, Willis M, Morgan D, Dye J, Bugbee B, Wood D, Seefeldt C. Biodiesel from microalgae, yeast, and bacteria: engine performance and exhaust emissions, energy fuels. Am Chem Soci. 2013;27:220–8.

    CAS  Google Scholar 

  • Wang Y, Ou S, Liu P, Zhang Z. Preparation of biodiesel from waste cooking oil via two-step catalyzed process. Energy Convers Manag. 2006;48(1):184–188.

    Google Scholar 

  • Winayanuwattikun P, Kaewpiboon C, Piriyakananon K, Chulalaksananukul K, Yongvanich T, Svasti J. Immobilized lipase from potential lipolytic microbes for catalyzing biodiesel production using palm oil as feedstock. Afr J Biotechnol. 2011;10(9):1666–73.

    CAS  Google Scholar 

  • Yasushi E. Analytical methods to evaluate the quality of edible fats and oils: the JOCS standard methods for analysis of fats, oils and related materials (2013) and advanced methods. J Oleo Sci. 2018;67(1):1–10.

    Google Scholar 

  • Zahir E, Saeed R, Hameed MA, Yousuf A. Study of physicochemical properties of edible oil and evaluation of frying oil quality by Fourier Transform-Infrared (FT-IR) Spectroscopy. Arab J Chem. 2014;10(2):S3870–6.

    Google Scholar 

  • Zah R, Ruddy TF. International trade in biofuels: an introduction to the special issue. J Clean Product. 2009;17:S1–3.

    Google Scholar 

  • Zannikos FE, Dodos GS, Lois E. Utilization of sesame oil for the production of bio based biofuels and lubricants. Proceedings of 3rd international conference Skiathos; 2011. p 19–2.

    Google Scholar 

  • Zhang D. Crystallization characteristics and fuel properties of tallow methyl esters. Master thesis, Food Science and Technology. USA: University of Nebraska–Lincoln; 1994.

    Google Scholar 

  • Ziegler-Borowska M, Chelminiak-Dudkiewicz D, Siodmiak T, Sikora A, Wegrzynowska-Drzymalska K, Skopinska-Wisniewska, Kaczmarek H, Marszall M. Chitosan–collagen coated magnetic nanoparticles for lipase immobilization—new type of “enzyme friendly” polymer shell crosslinking with squaric acid. Catalysts. 2017;7(1):26.

    Google Scholar 

  • Zhang Y, Dube MA, McLean DD, Kates M. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol. 2003;90:229–40.

    CAS  PubMed  Google Scholar 

  • Zhao X, Qi F, Yuan C, Du W, Liu D. Lipase-catalyzed process for biodiesel production: enzyme immobilization: process simulation and optimization. Renew Sustain Energy Rev. 2014;44:182–97.

    Google Scholar 

  • Thangaraj B, Pravin RS, Bagavathi M, Srinivasan R, Lin L. Catalysis in biodiesel production—a review. Clean Energy. 2019;3(1):2–23. https://doi.org/10.1093/ce/zky020.

    Article  Google Scholar 

  • Ahmad R, Sardar M. Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochem Anal Biochem. 2015;4:1–8.

    CAS  Google Scholar 

  • Yi S, Dai F, Zhao C. A reverse micelle strategy for fabricating magnetic lipase-immobilized nanoparticles with robust enzymatic activity. Sci Rep. 2017;7:1–9.

    Google Scholar 

  • Shagufta, Ahmad I, Dhar R. Sulfonic acid-functionalized solid acid catalyst in esterification and transesterification reactions. Catal Surv Jpn. 2017;21:53–69.

    CAS  Google Scholar 

  • Ryu HS, Kim HK, Choi WC, Kim MH, Park SY, Han NS. New cold adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Appl Microbiol Biotechnol. 2006;70:321–6.

    CAS  PubMed  Google Scholar 

  • Xiao M, Qi C, Obbard JP. Biodiesel production using Aspergillus niger as a whole-cell biocatalyst in a packed-bed reactor. GCB Bioenergy. 2011;3:293–8.

    CAS  Google Scholar 

  • Kawakami K, Oda Y, Takahashi R. Application of a Burkholderia cepacia lipase-immobilized silica monolith to batch and continuous biodiesel production with a stoichio-metric mixture of methanol and crude Jatropha oil. Biotechnol Biofuels. 2011;4:31–42.

    Google Scholar 

  • Shao P, Meng X, He J, Sun P. Analysis of immobilized Candida rugosa lipase catalyzed preparation of biodiesel from rapeseed soapstock. Food Bioprod Process. 2008;86:283–9.

    Google Scholar 

  • Yang KS, Sohn J-H, Kim HK. Catalytic properties of a lipase from Photobacterium lipolyticum for biodiesel production containing a high methanol concentration. J Biosci Bioeng. 2009;107:599–604.

    CAS  PubMed  Google Scholar 

  • Wang X, Dou P, Zhao P. Immobilization of lipases onto magnetic Fe3O4 nanoparticles for application in biodiesel production. ChemSusChem. 2010;2:947–50.

    Google Scholar 

  • Zhang KP, Lai JQ, Huang ZL, Yang Z. Penicillium expansum lipase-catalyzed production of biodiesel in ionic liquids. Bioresour Technol. 2011;102:2767–72.

    CAS  PubMed  Google Scholar 

  • Sim JH, Kamaruddin AH, Bhatia S. Biodiesel (FAME) productivity, catalytic efficiency and thermal stability of lipozyme TL IM for crude palm oil transesterification with methanol. J Am Oil Chem Soc. 2010;87:1027–34.

    CAS  Google Scholar 

  • Shah S, Sharma S, Gupta MN. Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil. Energy Fuel. 2004;18:154–9.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shabbir, A., Mukhtar, H., Mumtaz, M.W., Rashid, U. (2020). Green Synthesis of Biodiesel Using Microbial Lipases. In: Inamuddin, Asiri, A. (eds) Applications of Nanotechnology for Green Synthesis. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-44176-0_15

Download citation

Publish with us

Policies and ethics