Abstract
Several methodologies including chemical, physiochemical, and biological process have been adopted for the synthesis of nanoparticles with controlled morphologies and dimensions. Many of the chemical processes require the use of toxic chemicals, which have adverse impacts on our ecosystem. Although physiochemical techniques are considered as green technologies, they often use more energy and are more difficult to scale up.
On the other hand, it appears that many recently reported biological approaches could address the toxic chemical and energy-inefficient issues while having merits of easily scalable and low-cost processes. In this chapter, we introduce green biological approaches based on prokaryotic, for example, bacteria, and eukaryotic systems, such as plants, algae, yeast, and fungi and virus for the synthesis of nanoparticles.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
AbdelRahim K, Mahmoud SY, Ali AM, Almaary KS, Mustafa AE-ZMA, Husseiny SM. Extracellular biosynthesis of silver nanoparticles using Rhizopus Stolonifer. Saudi J Biol Sci. 2017;24(1):208–16. https://doi.org/10.1016/j.sjbs.2016.02.025.
Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology. 2003;14(7):824. https://iopscience.iop.org/article/10.1088/0957-4484/14/7/323/meta
Ahmed E, Kalathil S, Shi L, Alharbi O, Wang P. Synthesis of ultra-small platinum, palladium and gold nanoparticles by Shewanella loihica PV-4 electrochemically active biofilms and their enhanced catalytic activities. J Saudi Chem Soc. 2018;22(8):919–29. https://doi.org/10.1016/j.jscs.2018.02.002.
Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA. Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip. 2015;29:221–36. https://doi.org/10.1080/13102818.2015.1008194.
Alijani HQ, Pourseyedi S, Mahani MT, Khatami M. Green synthesis of zinc sulfide (ZnS) nanoparticles using Stevia rebaudiana Bertoni and evaluation of its cytotoxic properties. J Mol Struct. 2019;1175:214–8. https://doi.org/10.1016/j.molstruc.2018.07.103.
Aljabali AA, Barclay JE, Lomonossoff GP, Evans DJ. Virus templated metallic nanoparticles. Nanoscale. 2010;2(12):2596–600. https://doi.org/10.1039/C0NR00525H.
Apte M, Sambre D, Gaikawad S, Joshi S, Bankar A, Kumar AR, Zinjarde S. Psychrotrophic yeast yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express. 2013;3(1):32. https://link.springer.com/article/10.1186/2191-0855-3-32
Arsiya F, Sayadi MH, Sobhani S. Green synthesis of palladium nanoparticles using chlorella vulgaris. Mater Lett. 2017;186:113–5. https://doi.org/10.1016/j.matlet.2016.09.101.
Asghari-Paskiabi F, Imani M, Rafii-Tabar H, Razzaghi-Abyaneh M. Physicochemical properties, antifungal activity and cytotoxicity of selenium sulfide nanoparticles green synthesized by Saccharomyces cerevisiae. Biochem Biophys Res Commun. 2019;516(4):1078–84. https://doi.org/10.1016/j.bbrc.2019.07.007.
Ashraf I, Zubair M, Rizwan K, Rasool N, Jamil M, Khan SA, Tareen RB, Ahmad VU, Mahmood A, Riaz M, Zia-Ul-Haq M. Chemical composition, antioxidant and antimicrobial potential of essential oils from different parts of Daphne mucronata Royle. Chem Cent J. 2018;12(1):135. https://doi.org/10.1186/s13065-018-0495-1.
Aubin-Tam M-E, Hamad-Schifferli K. Structure and function of nanoparticle–protein conjugates. Biomed Mater. 2008;3:034001. https://iopscience.iop.org/article/10.1088/1748-6041/3/3/034001/meta
Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces. 2009;68(1):88–92. https://doi.org/10.1016/j.colsurfb.2008.09.022.
Balci S, Bittner AM, Schirra M, Thonke K, Sauer R, Hahn K, Kadri A, Wege C, Jeske H, Kern K. Catalytic coating of virus particles with zinc oxide. Electrochim Acta. 2009;54(22):5149–54. https://doi.org/10.1016/j.electacta.2009.03.036.
Bankar AV, Kumar AR, Zinjarde SS. Removal of chromium (VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica. J Hazard Mater. 2009;170(1):487–94. https://doi.org/10.1016/j.jhazmat.2009.04.070.
Banu AN, Balasubramanian C. Optimization and synthesis of silver nano- particles using Isaria fumosorosea against human vector mosquitoes. Parasitol Res. 2014;113:3843–51. https://link.springer.com/article/10.1007/s00436-014-4052-0
Baskar G, Chandhuru J, Fahad KS, Praveen AS, Chamundeeswari M, Muthukumar T. Anticancer activity of fungal L-asparaginase conjugated with zinc oxide nanoparticles. J Mater Sci Mater Med. 2015;26(1):43. https://link.springer.com/article/10.1007/s10856-015-5380-z
Bathrinarayanan PV, Thangavelu D, Muthukumarasamy VK, Munusamy C, Gurunathan B. Biological synthesis and characterization of intracellular gold nanoparticles using biomass of Aspergillus fumigatus. Bull Mater Sci. 2013;36(7):1201–5. https://link.springer.com/article/10.1007/s12034-013-0599-0
Bhadwal AS, Tripathi RM, Gupta RK, Kumar N, Singh RP, Shrivastav A. Biogenic synthesis and photocatalytic activity of CdS nanoparticles. RSC Adv. 2014;4(19):9484–90. https://pubs.rsc.org/en/content/articlelanding/2014/ra/c3ra46221h/unauth#!divAbstract
Bhainsa KC, D’souza SF. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces. 2006;47(2):160–4. https://doi.org/10.1016/j.colsurfb.2005.11.026.
Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M. Extracellular biosynthesis of magnetite using fungi. Small. 2006;2(1):135–41. https://doi.org/10.1002/smll.200500180.
Boroumand Moghaddam A, Namvar F, Moniri M, Azizi S, Mohamad R. Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules. 2015;20(9):16540–65. https://doi.org/10.3390/molecules200916540.
Cappitelli F, Sorlini C. Microorganisms attack synthetic polymers in items representing our cultural heritage. Appl Environ Microbiol. 2008;74(3):564–9. https://aem.asm.org/content/74/3/564
Celebioglu A, Topuz F, Yildiz ZI, Uyar T. One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers. Carbohydr Polym. 2019;207:471–9. https://doi.org/10.1016/j.carbpol.2018.12.008.
Chen JC, Lin ZH, Ma XX. Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett Appl Microbiol. 2003;37:105–8. https://doi.org/10.1046/j.1472-765X.2003.01348.x.
Chen P-Y, Dang X, Klug MT, Courchesne N-MD, Qi J, Hyder MN, Belcher AM, Hammond PT. M13 virus-enabled synthesis of titanium dioxide nanowires for tunable mesoporous semiconducting networks. Chem Mater. 2015;27(5):1531–40. https://doi.org/10.1021/cm503803u.
Clark JH, Luque R, Matharu AS. Green chemistry, biofuels, and biorefinery. Annu Rev Chem Biomol. 2012;3:183–207. https://doi.org/10.1146/annurev-chembioeng-062011-081014.
da Silva Ferreira V, ConzFerreira ME, Lima LM, Frasés S, de Souza W, Sant’Anna C. Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria. Enzyme Microb Technol. 2017;97:114–21. https://doi.org/10.1016/j.enzmictec.2016.10.018.
Dahl JA, Maddux BL, Hutchison JE. Toward greener nanosynthesis. Chem Rev. 2007;107:2228–69. https://doi.org/10.1021/cr050943k.
Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346. https://pubs.acs.org/doi/abs/10.1021/cr030698+
Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE. Involvement of hydrogenases in the formation of highly catalytic Pd (0) nanoparticles by bioreduction of Pd (II) using Escherichia coli mutant strains. Microbiology. 2010;156(9):2630–40. https://doi.org/10.1099/mic.0.036681-0.
Devi HS, Boda MA, Shah MA, Parveen S, Wani AH. Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Process Synth. 2019;8(1):38–45. https://doi.org/10.1515/gps-2017-0145.
Dhas TS, Kumar VG, Karthick V, Angel KJ, Govindaraju K. Facile synthesis of silver chloride nanoparticles using marine alga and its antibacterial efficacy. Spectrochim Acta A Mol Biomol Spectrosc. 2014;120:416–20. https://doi.org/10.1016/j.saa.2013.10.044.
Divya M, Kiran GS, Hassan S, Selvin J. Biogenic synthesis and effect of silver nanoparticles (AgNPs) to combat catheter-related urinary tract infections. Biocatal Agric Biotechnol. 2019;18:101037. https://doi.org/10.1016/j.colsurfb.2018.09.007.
Dudek NK, Sun CL, Burstein D. Novel microbial diversity and functional potential in the marine mammal oral microbiome. Curr Biol. 2017;27(24):3752–62. https://doi.org/10.1016/j.cub.2017.10.040.
Edison TN, Atchudan R, Kamal C, Lee YR. Caulerpa racemosa: a marine green alga for eco-friendly synthesis of silver nanoparticles and its catalytic degradation of methylene blue. Bioprocess Biosyst Eng. 2016;39(9):1401–8. https://link.springer.com/article/10.1007/s00449-016-1616-7
Elahian F, Reiisi S, Shahidi A, Mirzaei SA. High-throughput bioaccumulation, biotransformation, and production of silver and selenium nanoparticles using genetically engineered pichia pastoris. Nanomedicine NBM. 2017;13(3):853–61. https://doi.org/10.1016/j.nano.2016.10.009.
Elbeshehy EK, Elazzazy AM, Aggelis G. Silver nanoparti- cles synthesis mediated by new isolates of Bacillus spp., nano- particle characterization and their activity against Bean yellow mosaic virus and human pathogens. Front Microbiol. 2015;6:453. https://doi.org/10.3389/fmicb.2015.00453.
Faramarzi MA, Sadighi A. Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv Colloid. 2013;189:1–20. https://doi.org/10.1016/j.cis.2012.12.001.
Fawcett D, Verduin JJ, Shah M, Sharma SB, Poinern GEJ. A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. J Nanosci. 2017;2017:1–15. https://doi.org/10.1155/2017/8013850.
Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine NBM. 2010;6(1):103–9. https://doi.org/10.1016/j.nano.2009.04.006.
Fischlechner M, Donath E. Viruses as building blocks for materials and devices. Angew Chem Int Ed Engl. 2007;46(18):3184–93. https://doi.org/10.1002/anie.200603445.
Gadd GM. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res. 2007;111(1):3–49. https://doi.org/10.1016/j.mycres.2006.12.001.
Gahlawat G, Choudhury AR. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 2019;9(23):12944–67.
Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine NBM. 2009;5(4):382–6. https://doi.org/10.1016/j.nano.2009.06.005.
Gemishev O, Panayotova MI, Mintcheva N, Djerahov L, Tyuliev G, Gicheva G. A green approach for silver nanoparticles preparation by cell-free extract from Trichoderma reesei fungi and their characterization. Mater Res Express. 2019;6(9):095040. https://iopscience.iop.org/article/10.1088/2053-1591/ab2e6a/meta
Gerasopoulos K, McCarthy M, Royston E, Culver JN, Ghodssi R. Nanostructured nickel electrodes using the Tobacco mosaic virus for microbattery applications. J Micromech Microeng. 2008;18:104003. https://iopscience.iop.org/article/10.1088/0960-1317/18/10/104003/meta
Gericke M, Pinches A. Biological synthesis of metal nanoparticles. Hydrometallurgy. 2006;83(1):132–40. https://doi.org/10.1016/j.hydromet.2006.03.019.
Ghodake GS, Deshpande NG, Lee YP, Jin E. Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloids Surf B Biointerfaces. 2010;75:584–9. https://doi.org/10.1016/j.colsurfb.2009.09.040.
Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008;60:1307–15. https://doi.org/10.1016/j.addr.2008.03.016.
Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SR, Muniyandi J, Hariharan N, Eom SH. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces. 2009;74:328–35. https://doi.org/10.1016/j.colsurfb.2009.07.048.
Gurunathan S, Han J, Park JH, Kim JH. A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Res Lett. 2014;9:248. https://doi.org/10.1186/1556-276X-9-248.
Haefeli C, Franklin C, Hardy K. Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. J Bacteriol. 1984;158:389–92. https://jb.asm.org/content/158/1/389.short
Hamedi S, Ghaseminezhad M, Shokrollahzadeh S, Shojaosadati SA. Controlled biosynthesis of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluation. Artif Cells Nanomed Biotechnol. 2017;45(8):1588–96. https://doi.org/10.1080/21691401.2016.1267011.
Han MS, Lytton-Jean AK, Mirkin CA. A gold nanoparticle based approach for screening triplex DNA binders. J Am Chem Soc. 2006;128(15):4954–5. https://doi.org/10.1021/ja0606475.
Hawksworth DL, Lücking R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr. 2017;5:79–95. https://doi.org/10.1128/microbiolspec.FUNK-0052-2016.
Hoffman CS, Wood V, Fantes PA. An ancient yeast for young geneticists: a primer on the Schizosaccharomyces pombe model system. Genetics. 2015;201(2):403–23. https://doi.org/10.1534/genetics.115.181503.
Hu D, Yu S, Yu D, Liu N, Tang Y, Fan Y, Wang C, Wu A. Biogenic Trichoderma harzianum-derived selenium nanoparticles with control functionalities originating from diverse recognition metabolites against phytopathogens and mycotoxins. Food Control. 2019;106:106748. https://doi.org/10.1016/j.foodcont.2019.106748.
Huang Y, Song Y, Johnson D, Huang J, Dong R, Liu H. Selenium enhanced phytoremediation of diesel contaminated soil by Alternanthera philoxeroides. Ecotoxicol Environ Saf. 2019;173:347–52. https://doi.org/10.1016/j.ecoenv.2019.02.040.
Huo Q. A perspective on bioconjugated nanoparticles and quantum dots. Colloids Surf B: Biointerfaces. 2007;59:1–10. https://doi.org/10.1016/j.colsurfb.2007.04.019.
Hutchison JE. Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano. 2008;2:395–402. https://pubs.acs.org/doi/abs/10.1021/nn800131j
Ijaz F, Shahid S, Khan SA, Ahmad W, Zaman S. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: antimicrobial, antioxidant and photocatalytic dye degradation activities. Trop J Pharm Res. 2017;16(4):743–53. https://doi.org/10.4314/tjpr.v16i4.2.
Iravani S. Bacteria in nanoparticle synthesis: current status and future prospects. Int Scholarly Res Notices. 2014;2014:1–18. https://doi.org/10.1155/2014/359316.
Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KB. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc. 2012;90:78–84. https://doi.org/10.1016/j.saa.2012.01.006.
Jha AK, Prasad K, Prasad K. A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J. 2009;43(3):303–6. https://doi.org/10.1016/j.bej.2008.10.016.
Kadam VV, Ettiyappan JP, Balakrishnan RM. Mechanistic insight into the endophytic fungus mediated synthesis of protein capped ZnO nanoparticles. Mater Sci Eng B. 2019;243:214–21. https://doi.org/10.1016/j.mseb.2019.04.017.
Karthik L, Kumar G, Kirthi AV, Rahuman AA, Rao KB. Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng. 2014;37(2):261–7. https://link.springer.com/article/10.1007%2Fs00449-013-0994-3
Kathiresan K, Manivannan S, Nabeel MA, Dhivya B. Studies on silver nanoparticles synthesised by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces. 2009;71:133–7. https://doi.org/10.1016/j.colsurfb.2009.01.016.
Kaur H, Dolma K, Kaur N, Malhotra A, Kumar N, Dixit P, Sharma D, Mayilraj S, Choudhury AR. Marine microbe as nano-factories for copper biomineralization. Biotechnol Bioprocess Eng. 2015;20(1):51–7. https://link.springer.com/article/10.1007/s12257-014-0432-7
Keeling PJ. Diversity and evolutionary history of plastids and their hosts. Am J Bot. 2004;91(10):1481–93. https://doi.org/10.3732/ajb.91.10.1481.
Khalid A, Shahid S, Khan SA, Kanwal S, Yaqoob A, Rasool ZG, Rizwan K. Antioxidant activity and hepatoprotective effect of Cichorium intybus (Kasni) seed extract against carbon tetrachloride-induced liver toxicity in rats. Trop J Pharm Res. 2018;17(8):1531–8. https://doi.org/10.4314/tjpr.v17i8.10.
Khan SA, Rasool N, Riaz M, Nadeem R, Rashid U, Rizwan K, Zubair M, Bukhari IH, Gulzar T. Evaluation of antioxidant and cytotoxicity studies of Clerodendrum inerme. Asian J Chem. 2013;25(13):7457–62. https://doi.org/10.14233/ajchem.2013.14831.
Khan SA, Noreen F, Kanwal S, Iqbal A, Hussain G. Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater Sci Eng C. 2018;82:46–59. https://doi.org/10.1016/j.msec.2017.08.071.
Khan SA, Arshad Z, Shahid S, Arshad I, Rizwan K, Sher M, Fatima U. Synthesis of TiO2/Graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin. Compos Part B Eng. 2019;175(C):107120. https://doi.org/10.1016/j.compositesb.2019.107120.
Knez M, Bittner AM, Boes F, Wege C, Jeske H, Maib E, Kern K. Biotemplate synthesis of 3-nm nickel and cobalt nanowires. Nano Lett. 2003;3(8):1079–82. https://doi.org/10.1021/nl0342545.
Koonin EV, Senkevich TG, Dolja VV. The ancient Virus World and evolution of cells. Biol Direct. 2006;1:29. https://doi.org/10.1186/1745-6150-1-29.
Kralj S, Makovec D. Magnetic assembly of superparamagnetic iron oxide nanoparticle clusters into nanochains and nanobundles. ACS Nano. 2015;9(10):9700–7. https://pubs.acs.org/doi/10.1021/acsnano.5b02328.
Kulkarni N, Muddapur U. Biosynthesis of metal nanoparticles: a review. J Nanotechnol. 2014;2014:1–8. https://doi.org/10.1155/2014/510246.
Kumar CG, Mamidyala SK. Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids Surf B Biointerfaces. 2011;84(2):462–6. https://doi.org/10.1016/j.colsurfb.2011.01.042.
Kumar V, Sowmya B, Geetha R, Karpagambigai S, Rajeshkumar S, Lakshmi T. Preparation of yeast mediated semiconductor nanoparticles by candida albicans and its bactericidal potential against Salmonella typhi and Staphylococcus aureus. Int J Pharm Sci Res. 2019;10(2):861–4. https://doi.org/10.26452/ijrps.v10i2.262.
Kurtzman CP, Fell JW. Biodiversity and ecophysiology of yeasts. In: Gábor P, de la Rosa CL, editors. The yeast handbook. Berlin: Springer; 2006. p. 11–30. https://link.springer.com/content/pdf/10.1007/3-540-30985-3.pdf.
Lengke MF, Fleet ME, Southam G. Synthesis of palladium nanoparticles by reaction of filamentous cyanobacterial biomass with a palladium (II) chloride complex. Langmuir. 2007;23(17):8982–7. https://doi.org/10.1021/la7012446.
Longoria EC, Vilchis-Nestor AR, Avalos-Borja M. Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces. 2011;83:42–8. https://doi.org/10.1016/j.colsurfb.2010.10.035.
Longoria EC, Velasquez SM, Nestor AV, Berumen EA, Borja MA. Production of platinum nanoparticles and nanoaggregates using Neurospora crassa. J Microbiol Biotechnol. 2012;22:1000–4. https://doi.org/10.4014/jmb.1110.10085.
Mala JG, Facile RC. Production of ZnS quantum dot nanoparticles by Saccharomyces cerevisiae MTCC 2918. J Biotechnol. 2014;170:73–8. https://doi.org/10.1016/j.jbiotec.2013.11.017.
Mann S. Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature. 1993;365:499–505. https://www.nature.com/articles/365499a0.
Manivasagan P, Alam MS, Kang KH, Kwak M, Kim SK. Extracellular synthesis of gold bionanoparticles by Nocardiopsis sp. and evaluation of its antimicrobial, antioxidant and cytotoxic activities. Bioproc Biosyst Eng. 2015;38(6):1167–77. https://doi.org/10.1007/s00449-015-1358-y.
Marchiol L. Synthesis of metal nanoparticles in living plants. Ital J Agron. 2012;7:274–82. https://doi.org/10.4081/ija.2012.e37.
Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature. 1996;382(6592):607. https://www.nature.com/articles/382607a0
Mishra A, Kumari M, Pandey S, Chaudhry V, Gupta KC, Nautiyal CS. Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol. 2014;166:235–42. https://doi.org/10.1016/j.biortech.2014.04.085.
Momeni S, Nabipour I. A simple green synthesis of palladium nanoparticles with sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Appl Biochem Biotechnol. 2015;176(7):1937–49. https://link.springer.com/article/10.1007%2Fs12010-015-1690-3
Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett. 2001;1(10):515–9. https://doi.org/10.1021/nl0155274.
Nabi G, Khalid NR, Tahir MB, Rafique M, Rizwan M, Hussain S, Iqbal T, Majid A. A review on novel eco-friendly green approach to synthesis TiO2 nanoparticles using different extracts. J Inorg Organomet Polym Mater. 2018;28(4):1552–64. https://doi.org/10.1007/s10904-018-0812-0.
Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, Chiang YM, Belcher AM. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science. 2006;312(5775):885–8. https://science.sciencemag.org/content/312/5775/885
Nangia Y, Wangoo N, Goyal N, Shekhawat G, Suri CR. A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microb Cell Factories. 2009;8(1):39. https://microbialcellfactories.biomedcentral.com/articles/10.1186/1475-2859-8-39
Narayanan KB, Sakthivel N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interf Sci. 2011;169:59–79. https://doi.org/10.1016/j.cis.2011.08.004.
Nasrollahzadeh M, Atarod M, Sajjadi M, Sajadi SM, Issaabadi Z. Plant-mediated green synthesis of nanostructures: mechanisms, characterization, and applications. Interface Science and Technology. 2019;28:199–322. Elsevier. https://doi.org/10.1016/B978-0-12-813586-0.00006-7.
Nath D, Banerjee P. Green nanotechnology–a new hope for medical biology. Environ Toxicol Pharmacol. 2013;36:997–1014. https://doi.org/10.1016/j.etap.2013.09.002.
Omran BA, Nassar HN, Younis SA, Fatthallah NA, Hamdy A, El-Shatoury EH, El-Gendy NS. Physiochemical properties of Trichoderma longibrachiatum DSMZ 16517-synthesized silver nanoparticles for the mitigation of halotolerant sulphate-reducing bacteria. J Appl Microbiol. 2019;126(1):138–54. https://doi.org/10.1111/jam.14102.
Ortega FG, Fernández-Baldo MA, Fernández JG, Serrano MJ, Sanz MI, Diaz-Mochón JJ, Lorente JA, Raba J. Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast. Int J Nanomed. 2015;10:2021. https://doi.org/10.2147/IJN.S75835.
Pal G, Rai P, Pandey A. Green synthesis of nanoparticles: a greener approach for a cleaner future. In: Green synthesis, characterization and applications of nanoparticles. Amsterdam: Elsevier; 2019. p. 1–26. https://doi.org/10.1016/B978-0-08-102579-6.00001-0.
Palmer JD, Soltis DE, Chase MW. The plant tree of life: an overview and some points of view. Am J Bot. 2004;91(10):1437–45. https://doi.org/10.3732/ajb.91.10.1437.
Patil MP, Kim GD. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol. 2017;101(1):79–92. https://doi.org/10.1007/s00253-016-8012-8.
Patil MP, Kim GD. Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Colloids Surf B Biointerfaces. 2018;172:487–95. https://doi.org/10.1016/j.colsurfb.2018.09.007.
Pugazhendhi A, Prabhu R, Muruganantham K, Shanmuganathan R, Natarajan S. Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J Photochem Photobiol. 2019;190:86–97. https://doi.org/10.1016/j.jphotobiol.2018.11.014.
Radloff C, Vaia RA, Brunton J, Bouwer GT, Ward VK. Metal nanoshell assembly on a virus bioscaffold. Nano Lett. 2005;5(6):1187–91. https://doi.org/10.1021/nl050658g.
Raghukumar C, Raghukumar S. Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquat Microb Ecol. 1998;15(2):153–63. https://www.int-res.com/abstracts/ame/v15/n2/p153-163/
Rajakumar G, Rahuman AA, Roopan SM, Khanna VG, Elango G, Kamaraj C, Zahir AA, Velayutham K. Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta A Mol Biomol Spectrosc. 2012;91:23–9. https://doi.org/10.1016/j.saa.2012.01.011.
Rajeshkumar S, Ponnanikajamideen M, Malarkodi C, Malini M, Annadurai G. Microbe-mediated synthesis of antimicrobial semiconductor nanoparticles by marine bacteria. J Nanostruct Chem. 2014;4(2):96. https://link.springer.com/article/10.1007/s40097-014-0096-z
Ramakrishna M, Babu DR, Gengan RM, Chandra S, Rao GN. Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. J Nanostruct Chem. 2016;6(1):1–3. https://link.springer.com/article/10.1007%2Fs40097-015-0173-y
Ramanavičius A, Kaušaitė A, Ramanavičienė A. Polypyrrole-coated glucose oxidase nanoparticles for biosensor design. Sens Actuators B-Chem. 2005;111:532–9. https://doi.org/10.1016/j.snb.2005.03.038.
Razavi M, Salahinejad E, Fahmy M, Yazdimamaghani M, Vashaee D, Tayebi L. Green chemical and biological synthesis of nanoparticles and their biomedical applications. In: Green processes for nanotechnology. Cham: Springer; 2015. p. 207–35. https://link.springer.com/chapter/10.1007/978-3-319-15461-9_7.
Reidy B, Haase A, Luch A, Dawson K, Lynch I. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials. 2013;6:2295–350. https://doi.org/10.3390/ma6062295.
Riddin TL, Gericke M, Whiteley CG. Analysis of the inter-and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology. 2006;17(14):3482. https://iopscience.iop.org/article/10.1088/0957-4484/17/14/021/meta
Romero CM, Alvarez A, Martínez MA, Chaves S. Fungal nanotechnology: a new approach toward efficient biotechnology application. In: Fungal nanobionics: principles and applications. Singapore: Springer; 2018. p. 117–43. https://link.springer.com/chapter/10.1007/978-981-10-8666-3_5.
Saratale RG, Saratale GD, Shin HS, Jacob JM, Pugazhendhi A, Bhaisare M, Kumar G. New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environ Sci Pollut R. 2018;25(11):10164–83. https://link.springer.com/article/10.1007/s11356-017-9912-6
Saravanakumar K, Shanmugam S, Varukattu NB, MubarakAli D, Kathiresan K, Wang MH. Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma. J Photochem Photobiol B. 2019;190:103–9. https://doi.org/10.1016/j.jphotobiol.2018.11.017.
Sathishkumar M, Sneha K, Yun YS. Immobilization of silver nanoparticles synthesised using curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour Technol. 2010;101:7958–65. https://doi.org/10.1016/j.biortech.2010.05.051.
Selvakumar R, Seethalakshmi N, Thavamani P, Naidu R, Megharaj M. Recent advances in the synthesis of inorganic nano/microstructures using microbial biotemplates and their applications. RSC Adv. 2014;4(94):52156–69. https://doi.org/10.1039/C4RA07903E.
Sengani M, Grumezescu AM, Rajeswari VD. Recent trends and methodologies in gold nanoparticle synthesis–a prospective review on drug delivery aspect. OpenNano. 2017;2:37–46. https://doi.org/10.1016/j.onano.2017.07.001.
Seshadri S, Saranya K, Kowshik M. Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol Prog. 2011;27(5):1464–9. https://doi.org/10.1002/btpr.651.
Shah M, Fawcett D, Sharma S, Tripathy S, Poinern G. Green synthesis of metallic nanoparticles via biological entities. Materials. 2015;11:7278–308. https://doi.org/10.3390/ma8115377.
Shenton W, Douglas T, Young M, Stubbs G, Mann S. Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater. 1999;11(3):253–6. https://doi.org/10.1002/(SICI)1521-4095(199903)11:3%3C253::AID-ADMA253%3E3.0.CO;2-7.
Singh AV, Patil R, Anand A, Milani P, Gade WN. Biological synthesis of copper oxide nano particles using Escherichia coli. Curr Nanosci. 2010;6(4):365–9. https://doi.org/10.2174/157341310791659062.
Singh BR, Dwivedi S, Al-Khedhairy AA, Musarrat J. Synthesis of stable cadmium sulfide nanoparticles using surfactin produced by Bacillus amyloliquifaciens strain KSU-109. Colloids Surf B Biointerfaces. 2011;85(2):207–13. https://doi.org/10.1016/j.colsurfb.2011.02.030.
Singh P, Kim YJ, Singh H, Mathiyalagan R, Wang C, Yang DC. Biosynthesis of anisotropic silver nanoparticles by Bhargavaea indica and their synergistic effect with antibiotics against pathogenic microorganisms. J Nanomater. 2015;2015(4):1–10. https://doi.org/10.1155/2015/234741.
Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC. Microbial synthesis of flower-shaped gold nanoparticles. Artif Cells Nanomed Biotechnol. 2016a;44(6):1469–74. https://doi.org/10.3109/21691401.2015.1041640.
Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC. Weissella oryzae DC6-facilitated green synthesis of silver nano- particles and their antimicrobial potential. Artif Cells Nanomed Biotechnol. 2016b;44(6):1569–75. https://doi.org/10.3109/21691401.2015.1064937.
Singh P, Kim YJ, Zhang D, Yang DC. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016c;34(7):588–99. https://doi.org/10.1016/j.tibtech.2016.02.006.
Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol. 2018;16(1):84. https://doi.org/10.1186/s12951-018-0408-4.
Song JY, Jang HK, Kim BS. Biological synthesis of gold nanoparticles using magnolia kobus and Diopyros kaki leaf extracts. Process Biochem. 2009;44(10):1133–8. https://doi.org/10.1016/j.procbio.2009.06.005.
Soni N, Prakash S. Antimicrobial and mosquitocidal activity of microbial synthesized silver nanoparticles. J Parasitol Res. 2015;114(3):1023–30. https://link.springer.com/article/10.1007/s00436-014-4268-z
Thostenson ET, Li C, Chou TW. Nanocomposites in context. Compos Sci Technol. 2005;65(3–4):491–516. https://doi.org/10.1016/j.compscitech.2004.11.003.
Tomczak MM, Gupta MK, Drummy LF, Rozenzhak SM, Naik RR. Morphological control and assembly of zinc oxide using a biotemplate. Acta Biomater. 2009;5(3):876–82. https://doi.org/10.1016/j.actbio.2008.11.011.
Tsukamoto R, Muraoka M, Seki M, Tabata H, Yamashita I. Synthesis of CoPt and FePt3 nanowires using the central channel of tobacco mosaic virus as a biotemplate. Chem Mater. 2007;19(10):2389–91. https://doi.org/10.1021/cm062187k.
Vahabi K, Karimi Dorcheh S. Biosynthesis of silver nano-particles by Trichoderma and its medical applications. In: Biotechnology and biology of Trichoderma. Amsterdam: Elsevier; 2014. p. 393–404. https://doi.org/10.1016/B978-0-444-59576-8.00029-1.
Vahabi K, Mansoori GA, Karimi S. Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (A route for large-scale production of AgNPs). Insci J. 2011;1(1):65–79. https://doi.org/10.5640/insc.010165.
Waghmare SR, Mulla MN, Marathe SR, Sonawane KD. Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. 3 Biotech. 2015;5(1):33–8. https://link.springer.com/article/10.1007/s13205-014-0196-y
Wang C, Kim YJ, Singh P, Mathiyalagan R, Jin Y, Yang DC. Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artif Cells Nanomed Biotechnol. 2016;44(4):1127–32. https://doi.org/10.3109/21691401.2015.1011805.
Wang Y, O’Connor D, Shen Z, Lo IM, Tsang DC, Pehkonen S, Pu S, Hou D. Green synthesis of nanoparticles for the remediation of contaminated waters and soils: constituents, synthesizing methods, and influencing factors. J Clean Prod. 2019;226:540–9. https://doi.org/10.1016/j.jclepro.2019.04.128.
Wilde EW, Benemann JR. Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv. 1993;11:781–812. https://doi.org/10.1016/0734-9750(93)90003-6.
World Intellectual Property Report: Breakthrough Innovation and Economic Growth (PDF). World Intellectual Property Organization 2015 12–4. 2019. Retrieved July 9, 2019, https://www.wipo.int/edocs/pubdocs/en/wipo_pub_944_2015.pdf.
Xiao S, Knoll AH, Yuan X, Pueschel CM. Phosphatized multicellular algae in the Neoproterozoic Doushantuo formation, China, and the early evolution of florideophyte red algae. Am J Bot. 2004;91(2):214–27. https://doi.org/10.3732/ajb.91.2.214.
Zielonka A, Klimek-Ochab M. Fungal synthesis of size-defined nanoparticles. Adv Nat Sci Nanosci Nanotechnol. 2017;8(4):043001. https://doi.org/10.1088/2043-6254/aa84d4.
Zinjarde S, Apte M, Mohite P, Kumar AR. Yarrowia lipolytica and pollutants: interactions and applications. Biotechnol Adv. 2014;32(5):920–33. https://doi.org/10.1016/j.biotechadv.2014.04.008.
Zonaro E, Piacenza E, Presentato A, Monti F, Dell’Anna R, Lampis S, Vallini G. Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles. Microb Cell Fact. 2017;16(1):215. https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-017-0826-2
Acknowledgement
This work was supported by City University of Hong Kong (CityU Applied Research Grant: Project no. 9667160).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Khan, S.A., Lee, CS. (2020). Green Biological Synthesis of Nanoparticles and Their Biomedical Applications. In: Inamuddin, Asiri, A. (eds) Applications of Nanotechnology for Green Synthesis. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-44176-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-44176-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-44175-3
Online ISBN: 978-3-030-44176-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)