Abstract
Many functions, such as square root, are approximated and sped up with lookup tables containing pre-calculated values.
We introduce an approach using genetic algorithms to evolve such lookup tables for any smooth function. It provides double precision and calculates most values to the closest bit, and outperforms reference implementations in most cases with competitive run-time performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Carli, R., Notarstefano, G., Schenato, L., Varagnolo, D.: Analysis of Newton-Raphson consensus for multi-agent convex optimization under asynchronous and lossy communications. In: 2015 54th IEEE Conference on Decision and Control (CDC), December 2015. https://doi.org/10.1109/CDC.2015.7402236
Gordon, T.G.W.: Exploiting development to enhance the scalability of hardware evolution. Ph.D. thesis, University of London (2005)
Hansen, N.: Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed. In: GECCO 2009. ACM (2009). https://doi.org/10.1145/1570256.1570333
Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)
IEEE: Standard for Floating-Point Arithmetic. Std 754–2008, August 2008. https://doi.org/10.1109/IEEESTD.2008.4610935
Koza, J.R.: Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems. Technical report (1990)
Langdon, W.B.: Genetic improvement of software for multiple objectives. In: Barros, M., Labiche, Y. (eds.) SSBSE 2015. LNCS, vol. 9275, pp. 12–28. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22183-0_2
Langdon, W.B., Petke, J.: Evolving better software parameters. In: Colanzi, T.E., McMinn, P. (eds.) SSBSE 2018. LNCS, vol. 11036, pp. 363–369. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99241-9_22
Lenser, S.R., Tan, D.S.: Genetic algorithms for synthesizing data value predictors. Technical report, Carnegie Mellon University, November 1999
Markstein, P.W.: Computation of elementary functions on the IBM RISC System/6000 processor. IBM J. Res. Dev. 34(1), 111–119 (1990). https://doi.org/10.1147/rd.341.0111
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007). http://dl.acm.org/citation.cfm?id=1403886
Varagnolo, D., Zanella, F., Cenedese, A., Pillonetto, G., Schenato, L.: Newton-Raphson consensus for distributed convex optimization. IEEE Trans. Autom. Control 61(4) (2016). https://doi.org/10.1109/tac.2015.2449811
Yap, S.Z.Z., Zahari, S.M., Derasit, Z., Shariff, S.S.R.: An iterative Newton-Raphson (NR) method on Lee-Carter parameter’s estimation for predicting hospital admission rates. Am. Inst. Phys. (AIP) Conf. Proc. 1974(1) (2018). https://doi.org/10.1063/1.5041580
Z-Flores, E., Trujillo, L., Schütze, O., Legrand, P.: A local search approach to genetic programming for binary classification. In: GECCO 2015, pp. 1151–1158. ACM (2015). https://doi.org/10.1145/2739480.2754797
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Krauss, O., Langdon, W.B. (2020). Automatically Evolving Lookup Tables for Function Approximation. In: Hu, T., Lourenço, N., Medvet, E., Divina, F. (eds) Genetic Programming. EuroGP 2020. Lecture Notes in Computer Science(), vol 12101. Springer, Cham. https://doi.org/10.1007/978-3-030-44094-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-44094-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-44093-0
Online ISBN: 978-3-030-44094-7
eBook Packages: Computer ScienceComputer Science (R0)