Skip to main content

Automatically Evolving Lookup Tables for Function Approximation

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2020)

Abstract

Many functions, such as square root, are approximated and sped up with lookup tables containing pre-calculated values.

We introduce an approach using genetic algorithms to evolve such lookup tables for any smooth function. It provides double precision and calculates most values to the closest bit, and outperforms reference implementations in most cases with competitive run-time performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carli, R., Notarstefano, G., Schenato, L., Varagnolo, D.: Analysis of Newton-Raphson consensus for multi-agent convex optimization under asynchronous and lossy communications. In: 2015 54th IEEE Conference on Decision and Control (CDC), December 2015. https://doi.org/10.1109/CDC.2015.7402236

  2. Gordon, T.G.W.: Exploiting development to enhance the scalability of hardware evolution. Ph.D. thesis, University of London (2005)

    Google Scholar 

  3. Hansen, N.: Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed. In: GECCO 2009. ACM (2009). https://doi.org/10.1145/1570256.1570333

  4. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

    Article  Google Scholar 

  5. IEEE: Standard for Floating-Point Arithmetic. Std 754–2008, August 2008. https://doi.org/10.1109/IEEESTD.2008.4610935

  6. Koza, J.R.: Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems. Technical report (1990)

    Google Scholar 

  7. Langdon, W.B.: Genetic improvement of software for multiple objectives. In: Barros, M., Labiche, Y. (eds.) SSBSE 2015. LNCS, vol. 9275, pp. 12–28. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22183-0_2

    Chapter  Google Scholar 

  8. Langdon, W.B., Petke, J.: Evolving better software parameters. In: Colanzi, T.E., McMinn, P. (eds.) SSBSE 2018. LNCS, vol. 11036, pp. 363–369. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99241-9_22

    Chapter  Google Scholar 

  9. Lenser, S.R., Tan, D.S.: Genetic algorithms for synthesizing data value predictors. Technical report, Carnegie Mellon University, November 1999

    Google Scholar 

  10. Markstein, P.W.: Computation of elementary functions on the IBM RISC System/6000 processor. IBM J. Res. Dev. 34(1), 111–119 (1990). https://doi.org/10.1147/rd.341.0111

    Article  MathSciNet  Google Scholar 

  11. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007). http://dl.acm.org/citation.cfm?id=1403886

    MATH  Google Scholar 

  12. Varagnolo, D., Zanella, F., Cenedese, A., Pillonetto, G., Schenato, L.: Newton-Raphson consensus for distributed convex optimization. IEEE Trans. Autom. Control 61(4) (2016). https://doi.org/10.1109/tac.2015.2449811

  13. Yap, S.Z.Z., Zahari, S.M., Derasit, Z., Shariff, S.S.R.: An iterative Newton-Raphson (NR) method on Lee-Carter parameter’s estimation for predicting hospital admission rates. Am. Inst. Phys. (AIP) Conf. Proc. 1974(1) (2018). https://doi.org/10.1063/1.5041580

  14. Z-Flores, E., Trujillo, L., Schütze, O., Legrand, P.: A local search approach to genetic programming for binary classification. In: GECCO 2015, pp. 1151–1158. ACM (2015). https://doi.org/10.1145/2739480.2754797

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Krauss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krauss, O., Langdon, W.B. (2020). Automatically Evolving Lookup Tables for Function Approximation. In: Hu, T., Lourenço, N., Medvet, E., Divina, F. (eds) Genetic Programming. EuroGP 2020. Lecture Notes in Computer Science(), vol 12101. Springer, Cham. https://doi.org/10.1007/978-3-030-44094-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44094-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44093-0

  • Online ISBN: 978-3-030-44094-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics