Skip to main content

3D Shape Matching for Retrieval and Recognition

  • Chapter
  • First Online:
3D Imaging, Analysis and Applications
  • 2021 Accesses

Abstract

Nowadays, multimedia information such as images and videos are present in many aspects of our lives. Three-dimensional information is also becoming important in different applications, for instance, entertainment, medicine, security, art, just to name a few. It is therefore necessary to study how to properly process 3D information taking advantage of the properties that it provides. This chapter gives an overview of 3D shape matching and its applications in shape retrieval and recognition. In order to present the subject, we opted for describing in detail four approaches with good balance among maturity and novelty, namely, the PANORAMA descriptor, spin images, functional maps, and Heat Kernel Signatures for retrieval. We also aim at stressing the importance of this field in areas such as computer vision and computer graphics, as well as the importance of addressing the main challenges on this research field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atmosukarto, I., Wilamowska, K., Heike, C., Shapiro, L.G.: 3D object classification using salient point patterns with application to craniofacial research. Pattern Recognit. 43(4), 1502–1517 (2010)

    Google Scholar 

  2. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1626–1633 (2011)

    Google Scholar 

  3. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press/Addison-Wesley, Boston (1999)

    Google Scholar 

  4. Beecks, C., Uysal, M.S., Seidl, T.: Signature quadratic form distance. In: Proceedings of the ACM International Conference on Image and Video Retrieval, CIVR’10, pp. 438–445. ACM, New York (2010). https://doi.org/10.1145/1816041.1816105

  5. Belkin, M., Sun, J., Wang, Y.: Discrete Laplace operator on meshed surfaces. In: Teillaud, M., Welzl, E. (eds.) Proceedings of the Symposium on Computational Geometry, pp. 278–287. ACM (2008)

    Google Scholar 

  6. Belkin, M., Sun, J., Wang, Y.: Constructing Laplace operator from point clouds in Rd. In: Mathieu, C. (ed.) Proceedings of the ACM-SIAM Symposium on Discrete Algorithms., pp. 1031–1040. SIAM (2009)

    Google Scholar 

  7. Besl, P.J., McKay, N.D.: A Method for Registration of 3D Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Google Scholar 

  8. Biasotti, S., Thompson, E.M., Aono, M., Hamza, A.B., Bustos, B., Dong, S., Du, B., Fehri, A., Li, H., Limberger, F.A., Masoumi, M., Rezaei, M., Sipiran, I., Sun, L., Tatsuma, A., Forero, S.V., Wilson, R.C., Wu, Y., Zhang, J., Zhao, T., Fornasa, F., Giachetti, A.: Retrieval of surfaces with similar relief patterns. In: Pratikakis, I., Dupont, F., Ovsjanikov, M. (eds.) Eurographics Workshop on 3D Object Retrieval. The Eurographics Association (2017)

    Google Scholar 

  9. Bimbo, A.D., Pala, P.: Content-based retrieval of 3D models. ACM Trans. Multimedia Comput. Commun. Appl. 2(1), 20–43 (2006)

    Google Scholar 

  10. Bobenko, A.I.: Delaunay triangulations of polyhedral surfaces, a discrete Laplace-Beltrami operator and applications. In: Teillaud, M., Welzl, E. (eds.) Proceedings of the Symposium on Computational Geometry, p. 38. ACM (2008)

    Google Scholar 

  11. Boscaini, D., Masci, J., Rodoià, E., Bronstein, M.: Learning shape correspondence with anisotropic convolutional neural networks. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS’16, pp. 3197–3205. Curran Associates Inc., USA. http://dl.acm.org/citation.cfm?id=3157382.3157455 (2016)

  12. Boyer, E., Bronstein, A.M., Bronstein, M.M., Bustos, B., Darom, T., Horaud, R., Hotz, I., Keller, Y., Keustermans, J., Kovnatsky, A., Litmany, R., Reininghaus, J., Sipiran, I., Smeets, D., Suetens, P., Vandermeulen, D., Zaharescu, A., Zobel, V.: SHREC ’11: robust feature detection and description benchmark. In: Laga et al. [62], pp. 71–78. http://diglib.eg.org/EG/DL/WS/3DOR/3DOR11/071-078.pdf

  13. Bronstein, A., Bronstein, M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Springer Publishing Company, Incorporated (2008)

    MATH  Google Scholar 

  14. Bronstein, A.M., Bronstein, M.M., Bustos, B., Castellani, U., Crisani, M., Falcidieno, B., Guibas, L.J., Kokkinos, I., Murino, V., Sipiran, I., Ovsjanikov, M., Patanè, G., Spagnuolo, M., Sun, J.: SHREC 2010: robust feature detection and description benchmark. In: Proceedings of the Workshop on 3D Object Retrieval (3DOR’10). Eurographics Association (2010)

    Google Scholar 

  15. Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30(1), 1:1–1:20 (2011)

    Google Scholar 

  16. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. Natl. Acad. Sci. 103(5), 1168–1172 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017). https://doi.org/10.1109/MSP.2017.2693418

    Article  Google Scholar 

  18. Bustos, B., Keim, D., Saupe, D., Schreck, T.: Content-based 3D object retrieval. IEEE Comput. Graph. Appl. 27(4), 22–27 (2007)

    Google Scholar 

  19. Bustos, B., Keim, D.A., Saupe, D., Schreck, T., Vranic, D.V.: Feature-based similarity search in 3D object databases. ACM Comput. Surv. 37(4), 345–387 (2005)

    Google Scholar 

  20. Bustos, B., Keim, D.A., Saupe, D., Schreck, T., Vranic, D.V.: An experimental effectiveness comparison of methods for 3D similarity search. Int. J. Digital Libr. 6(1), 39–54 (2006)

    Google Scholar 

  21. Campbell, R.J., Flynn, P.J.: A survey of free-form object representation and recognition techniques. Comput. Vis. Image Underst. 81(2), 166–210 (2001)

    MATH  Google Scholar 

  22. Cerri, A., Biasotti, S., Abdelrahman, M., Angulo, J., Berger, K., Chevallier, L., El-Melegy, M.T., Farag, A.A., Lefebvre, F., Giachetti, A., Guermoud, H., Liu, Y.J., Velasco-Forero, S., Vigouroux, J.R., Xu, C.X., Zhang, J.B.: SHREC’13 track: retrieval on textured 3D models. In: Proceedings of the 6th Eurographics Workshop on 3D Object Retrieval, pp. 73–80. Eurographics Association (2013)

    Google Scholar 

  23. Chang, A.X., Funkhouser, T.A., Guibas, L.J., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: ShapeNet: an information-rich 3d model repository. arXiv:1512.03012 (2015)

  24. Chaouch, M., Verroust-Blondet, A.: 3D Model retrieval based on depth line descriptor. In: Proceedings of the IEEE International Conference Multimedia and Expo, pp. 599–602. IEEE (2007)

    Google Scholar 

  25. Chen, D.Y., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On visual similarity based 3D model retrieval. Comput. Graph. Forum 22(3), 223–232 (2003)

    Google Scholar 

  26. Chen, H., Bhanu, B.: 3d free-form object recognition in range images using local surface patches. Pattern Recognit. Lett. 28(10), 1252–1262. http://www.sciencedirect.com/science/article/pii/S0167865507000621 (2007). https://doi.org/10.1016/j.patrec.2007.02.009

  27. Chen, H., Bhanu, B.: Human ear recognition in 3D. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 718–737 (2007)

    Google Scholar 

  28. Chen, H., Bhanu, B.: Efficient recognition of highly similar 3D objects in range images. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 172–179 (2009)

    Google Scholar 

  29. Chen, J., Fang, Y.: Deep Cross-modality adaptation via semantics preserving adversarial learning for sketch-based 3D shape retrieval. In: Proceedings of the European Conference on Computer Vision, pp. 624–640 (2018)

    Google Scholar 

  30. Chua, C.S., Jarvis, R.: Point signatures: a new representation for 3D object recognition. Int. J. Comput. Vis. 25(1), 63–85 (1997)

    Google Scholar 

  31. Chuang, M., Luo, L., Brown, B.J., Rusinkiewicz, S., Kazhdan, M.M.: Estimating the Laplace-Beltrami operator by restricting 3D functions. Comput. Graph. Forum 28(5), 1475–1484 (2009)

    Google Scholar 

  32. Cyr, C.M., Kimia, B.B.: A similarity-based aspect-graph approach to 3D object recognition. Int. J. Comput. Vis. 57(1), 5–22 (2004)

    Google Scholar 

  33. Daras, P., Zarpalas, D., Tzovaras, D., Strintzis, M.G.: Shape matching using the 3d radon transform. In: Proceedings of the International Symposium on 3D Data Processing, Visualization and Transmission, pp. 953–960. IEEE Computer Society (2004)

    Google Scholar 

  34. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, New York (2000)

    MATH  Google Scholar 

  35. Dutagaci, H., Sankur, B., Yemez, Y.: Transform-based methods for indexing and retrieval of 3D objects. In: Proceedings of the International Conference on 3D Digital Imaging and Modeling, pp. 188–195. IEEE Computer Society (2005)

    Google Scholar 

  36. Eynard, D., Kovnatsky, A., Bronstein, M.M., Glashoff, K., Bronstein, A.M.: Multimodal manifold analysis by simultaneous diagonalization of laplacians. IEEE Trans. Pattern Anal. Mach. Intell. 37(12), 2505–2517 (2015)

    Google Scholar 

  37. Faloutsos, C., Lin, K.: FastMap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In: Proceedings of the ACM International Conference on Management of Data(SIGMOD), pp. 163–174 (1995)

    Google Scholar 

  38. Feng, Y., Zhang, Z., Zhao, X., Ji, R., Gao, Y.: GVCNN: Group-view convolutional neural networks for 3D shape recognition. In: Proceedings of the Computer Vision and Pattern Recognition, pp. 264–272 (2018)

    Google Scholar 

  39. Flint, A., Dick, A., van den Hengel, A.: Thrift: local 3d structure recognition. In: 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications (DICTA 2007), pp. 182–188 (2007). https://doi.org/10.1109/DICTA.2007.4426794

  40. Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J. (eds.) Proceedings of the European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, vol. 3023, pp. 224–237. Springer, Berlin (2004)

    Google Scholar 

  41. Funkhouser, T.A., Kazhdan, M.M., Min, P., Shilane, P.: Shape-based retrieval and analysis of 3D models. Commun. ACM 48(6), 58–64 (2005)

    Google Scholar 

  42. Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25(1), 130–150 (2006)

    Google Scholar 

  43. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the International Conference and Exhibition on Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 209–216 (1997)

    Google Scholar 

  44. Ghaderpanah, M., Abbas, A., Hamza, A.B.: Entropic hashing of 3D objects using Laplace-Beltrami operator. In: Proceedings of the International Conference Image Processing (ICIP), pp. 3104–3107. IEEE (2008)

    Google Scholar 

  45. Giorgi, D., Attene, M., Patanè, G., Marini, S., Pizzi, C., Biasotti, S., Spagnuolo, M., Falcidieno, B., Corvi, M., Usai, L., Roncarolo, L., Garibotto, G.: A critical assessment of 2D and 3D face recognition algorithms. In: Tubaro, S., Dugelay, J.L. (eds.) Proceedings of the International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 79–84. IEEE Computer Society (2009)

    Google Scholar 

  46. Goodall, S., Lewis, P.H., Martinez, K., Sinclair, P.A.S., Giorgini, F., Addis, M., Boniface, M.J., Lahanier, C., Stevenson, J.: SCULPTEUR: Multimedia retrieval for museums. In: Proceedings of the ACM International Conference on Image and Video Retrieval (CIVR), Lecture Notes in Computer Science, vol. 3115, pp. 638–646. Springer, Berlin (2004)

    Google Scholar 

  47. Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., Kwok, N.M.: A comprehensive performance evaluation of 3d local feature descriptors. Int. J. Comput. Vis. 116(1), 66–89 (2016). https://doi.org/10.1007/s11263-015-0824-y

    Article  MathSciNet  Google Scholar 

  48. Guo, Y., Sohel, F., Bennamoun, M., Lu, M., Wan, J.: Rotational projection statistics for 3d local surface description and object recognition. Int. J. Comput. Vis. 105(1), 63–86 (2013). https://doi.org/10.1007/s11263-013-0627-y

    Article  MathSciNet  MATH  Google Scholar 

  49. Guo, Y., Sohel, F., Bennamoun, M., Lu, M., Wan., J.: TriSI a distinctive local surface descriptor for 3d modeling and object recognition. In: Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2013), pp. 86–93. INSTICC, SciTePress (2013). https://doi.org/10.5220/0004277600860093

  50. He, X., Zhou, Y., Zhou, Z., Bai, S., Bai, X.: Triplet-center loss for multi-view 3d object retrieval. In: Proceedings of the Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  51. Hetzel, G., Leibe, B., Levi, P., Schiele, B.: 3D Object Recognition from Range Images using Local Feature Histograms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 394–399. IEEE Computer Society (2001)

    Google Scholar 

  52. Huang, P., Hilton, A., Starck, J.: Shape similarity for 3D video sequences of people. Int. J. of Comput. Vis. 89(2–3), 362–381 (2010)

    Google Scholar 

  53. Huang, Q.X., Flöry, S., Gelfand, N., Hofer, M., Pottmann, H.: Reassembling fractured objects by geometric matching. ACM Trans. Graph. 25(3), 569 (2006)

    Google Scholar 

  54. Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y., Ramani, K.: Three-dimensional shape searching: state-of-the-art review and future trends. Comput.-Aided Des. 37(5), 509–530 (2005)

    Google Scholar 

  55. Johnson, A.: Spin-images: A representation for 3D surface matching. Ph.D. Thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (1997)

    Google Scholar 

  56. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)

    Google Scholar 

  57. van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. Comput. Graph. Forum 30(6), 1681–1707 (2011)

    Google Scholar 

  58. Kang, S.B., Ikeuchi, K.: The Complex EGI: a new representation for 3D pose determination. IEEE Trans. Pattern Anal. Mach. Intell. 15(1), 707–721 (1993)

    Google Scholar 

  59. Keim, D.A.: Efficient geometry-based similarity search of 3D spatial databases. In: Delis, A., Faloutsos, C., Ghandeharizadeh, S. (eds.) Proceedings of the ACM International Conference on Management of Data (SIGMOD), pp. 419–430. ACM Press (1999)

    Google Scholar 

  60. Kim, V.G., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. ACM Trans. Graph. 30(4), 79:1–79:12 (2011)

    Google Scholar 

  61. Kovnatsky, A., Bronstein, M.M., Bronstein, A.M., Glashoff, K., Kimmel, R.: Coupled quasi-harmonic bases. Comput. Graph. Forum 32(2pt4), 439–448 (2013)

    Google Scholar 

  62. Laga, H., Schreck, T., Ferreira, A., Godil, A., Pratikakis, I., Veltkamp, R. (eds.): Eurographics Workshop on 3D Object Retrieval. Eurographics Association, Llandudno (2011)

    Google Scholar 

  63. Laga, H., Takahashi, H., Nakajima, M.: Spherical wavelet descriptors for content-based 3D model retrieval. In: Proceedings of the Shape Modeling International, p. 15. IEEE Computer Society (2006)

    Google Scholar 

  64. Langenfeld, F., Axenopoulos, A., Chatzitofis, A., Craciun, D., Daras, P., Du, B., Giachetti, A., Lai, Y.k., Li, H., Li, Y., Masoumi, M., Peng, Y., Rosin, P.L., Sirugue, J., Sun, L., Thermos, S., Toews, M., Wei, Y., Wu, Y., Zhai, Y., Zhao, T., Zheng, Y., Montes, M.: Protein shape retrieval. In: Telea, A., Theoharis, T., Veltkamp, R. (eds.) Eurographics Workshop on 3D Object Retrieval. The Eurographics Association (2018)

    Google Scholar 

  65. Lee, T.K., Drew, M.S.: 3D object recognition by eigen-scale-space of contours. In: Sgallari, F., Murli, A., Paragios, N. (eds.) Proceedings of the International Conference on Scale Space and Variational Methods in Computer Vision, Lecture Notes in Computer Science, vol. 4485, pp. 883–894. Springer (2007)

    Google Scholar 

  66. Leow, W.K., Li, R.: The analysis and applications of adaptive-binning color histograms. Comput. Vision Image Understanding 94(1), 67–91. http://www.sciencedirect.com/science/article/pii/S1077314203001929 (2004). https://doi.org/10.1016/j.cviu.2003.10.010

  67. Lévy, B.: Laplace-Beltrami eigenfunctions towards an algorithm that understands geometry. In: Proceedings of the Shape Modeling International, p. 13. IEEE Computer Society (2006)

    Google Scholar 

  68. Li, X., Guskov, I.: 3D object recognition from range images using pyramid matching. In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 1–6. IEEE (2007)

    Google Scholar 

  69. Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Lavoué, G., Nguyen, H.V., Ohbuchi, R., Ohkita, Y., Ohishi, Y., Porikli, F., Reuter, M., Sipiran, I., Smeets, D., Suetens, P., Tabia, H., Vandermeulen, D.: SHREC ’11 Track: shape retrieval on non-rigid 3D watertight meshes. In: Laga et al. [62], pp. 79–88. http://diglib.eg.org/EG/DL/WS/3DOR/3DOR11/079-088.pdf

  70. Lian, Z., Godil, A., Fabry, T., Furuya, T., Hermans, J., Ohbuchi, R., Shu, C., Smeets, D., Suetens, P., Vandermeulen, D., Wuhrer, S.: SHREC’10 Track: Non-rigid 3D shape retrieval. In: Daoudi, M., Schreck, T. (eds.) Proceedings of the 3th Eurographics Workshop on 3D Object Retrieval, pp. 101–108. Eurographics Association, Norrköping, Sweden. http://diglib.eg.org/EG/DL/WS/3DOR/3DOR10/101-108.pdf (2010)

  71. Limberger, F.A., Wilson, R.C., Aono, M., Audebert, N., Boulch, A., Bustos, B., Giachetti, A., Godil, A., Saux, B.L., Li, B., Lu, Y., Nguyen, H.D., Nguyen, V.T., Pham, V.K., Sipiran, I., Tatsuma, A., Tran, M.T., Velasco-Forero, S.: Point-cloud shape retrieval of non-rigid toys. In: Pratikakis, I., Dupont, F., Ovsjanikov, M. (eds.) Eurographics Workshop on 3D Object Retrieval. The Eurographics Association (2017)

    Google Scholar 

  72. Lipman, Y., Funkhouser, T.: MÖbius voting for surface correspondence. ACM Trans. Graph. 28(3), 72:1–72:12 (2009)

    Google Scholar 

  73. Litany, O., Remez, T., Rodolà, E., Bronstein, A.M., Bronstein, M.M.: Deep functional maps: structured prediction for dense shape correspondence. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 5660–5668 (2017)

    Google Scholar 

  74. Litman, R., Bronstein, A., Bronstein, M., Castellani, U.: Supervised learning of bag-of-features shape descriptors using sparse coding. In: Proceedings of the Symposium on Geometry Processing, SGP ’14, pp. 127–136. Eurographics Association, Aire-la-Ville, Switzerland (2014)

    Google Scholar 

  75. Liu, A., Xiang, S., Li, W., Nie, W., Su, Y.: Cross-domain 3D model retrieval via visual domain adaptation. In: International Joint Conference on Artificial Intelligence, pp. 828–834 (2018)

    Google Scholar 

  76. Masci, J., Boscaini, D., Bronstein, M.M., Vandergheynst, P.: Geodesic convolutional neural networks on riemannian manifolds. In: 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 832–840 (2015). https://doi.org/10.1109/ICCVW.2015.112

  77. Meyer, M., Desbrun, M., Schroder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. Vis. Math. III, 35–57 (2003)

    MathSciNet  MATH  Google Scholar 

  78. Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model cnns. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5425–5434 (2016)

    Google Scholar 

  79. Novotni, M., Klein, R.: A geometric approach to 3D object comparison. In: Proceedings of the Shape Modeling International, pp. 167–175. IEEE Computer Society (2001)

    Google Scholar 

  80. Osada, R., Funkhouser, T.A., Chazelle, B., Dobkin, D.P.: Shape distributions. ACM Trans. Graph. 21(4), 807–832 (2002)

    MathSciNet  MATH  Google Scholar 

  81. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31(4), 30:1–30:11 (2012)

    Google Scholar 

  82. Ovsjanikov, M., Bronstein, A.M., Guibas, L.J., Bronstein, M.M.: Shape google: a computer vision approach to invariant shape retrieval. In: Proceedings of the Workshop on Non-Rigid Shape Analysis and Deformable Image Alignment (NORDIA) (2009)

    Google Scholar 

  83. Papadakis, P., Pratikakis, I., Theoharis, T., Perantonis, S.: PANORAMA: a 3D shape descriptor base on panoramic views for unsupervised 3D object retrieval. Int. J. Comput. Vis. 89(2–3), 177–192 (2010)

    Google Scholar 

  84. Papaioannou, G., Schreck, T., Andreadis, A., Mavridis, P., Gregor, R., Sipiran, I., Vardis, K.: From reassembly to object completion: a complete systems pipeline. JOCCH 10(2), 8:1–8:22 (2017)

    Google Scholar 

  85. Paquet, E., Rioux, M.: Nefertiti: a query by content software for three-dimensional models databases management. In: Proceedings of the International Conference on 3D Digital Imaging and Modeling, pp. 345–352. IEEE Computer Society (1997)

    Google Scholar 

  86. Paquet, E., Viktor, H.: Exploring protein architecture using 3D shape-based signatures. In: Proceedings of the International Conference on Engineering in Medicine and Biology, pp. 1204 –1208 (2007)

    Google Scholar 

  87. Paquet, E., Viktor, H.L.: Capri/MR: exploring protein databases from a structural and physicochemical point of view. Proc. VLDB 1(2), 1504–1507 (2008)

    Google Scholar 

  88. Perakis, P., Theoharis, T., Passalis, G., Kakadiaris, I.A.: Automatic 3D facial region retrieval from multi-pose facial datasets. In: Spagnuolo, M., Pratikakis, I., Veltkamp, R.C., Theoharis, T. (eds.) Proceedings of the Workshop on 3D Object Retrieval (3DOR), pp. 37–44. Eurographics Association (2009)

    Google Scholar 

  89. Rodolí, E., Cosmo, L., Bronstein, M.M., Torsello, A., Cremers, D.: Partial functional correspondence. Comput. Graph. Forum 36(1), 222–236 (2017)

    Google Scholar 

  90. Rodolà, E., Bronstein, A.M., Albarelli, A., Bergamasco, F., Torsello, A.: A game-theoretic approach to deformable shape matching. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 182–189 (2012)

    Google Scholar 

  91. Rodolà, E., Bulò, S.R., Cremers, D.: Robust region detection via consensus segmentation of deformable shapes. Comput. Graph. Forum 33(5), 97–106 (2014)

    Google Scholar 

  92. Rodolà, E., Torsello, A., Harada, T., Kuniyoshi, Y., Cremers, D.: Elastic net constraints for shape matching. In: 2013 IEEE International Conference on Computer Vision, pp. 1169–1176 (2013)

    Google Scholar 

  93. Ronneberger, O., Burkhardt, H., Schultz, E.: General-purpose object recognition in 3D volume data sets using gray-scale invariants - classification of airborne pollen-grains recorded with a confocal laser scanning microscope. In: Conference on Pattern Recognition, vol. 2 (2002)

    Google Scholar 

  94. Ruiz-Correa, S., Shapiro, L.G., Melia, M.: A New Signature-Based Method for Efficient 3D Object Recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1 (2001)

    Google Scholar 

  95. Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Belyaev, A.G., Garland, M. (eds.) Proceedings of the Symposium on Geometry Processing, ACM International Conference Proceeding Series, vol. 257, pp. 225–233. Eurographics Association (2007)

    Google Scholar 

  96. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3d registration. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3212–3217 (2009). https://doi.org/10.1109/ROBOT.2009.5152473

  97. Rusu, R.B., Blodow, N., Marton, Z.C., Beetz, M.: Aligning point cloud views using persistent feature histograms. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3384–3391 (2008). https://doi.org/10.1109/IROS.2008.4650967

  98. Savva, M., Yu, F., Su, H., Kanezaki, A., Furuya, T., Ohbuchi, R., Zhou, Z., Yu, R., Bai, S., Bai, X., Aono, M., Tatsuma, A., Thermos, S., Axenopoulos, A., Papadopoulos, G.T., Daras, P., Deng, X., Lian, Z., Li, B., Johan, H., Lu, Y., Mk, S.: Large-scale 3D shape retrieval from ShapeNet core55. In: Pratikakis, I., Dupont, F., Ovsjanikov, M. (eds.) Eurographics Workshop on 3D Object Retrieval. The Eurographics Association (2017)

    Google Scholar 

  99. Shilane, P., Min, P., Kazhdan, M.M., Funkhouser, T.A.: The Princeton Shape Benchmark. In: Proceedings of the Shape Modeling International, pp. 167–178. IEEE Computer Society (2004)

    Google Scholar 

  100. Silvia, B., Cerri, A., Falcidieno, B., Spagnuolo, M.: Similarity assessment for the analysis of 3D artefacts. In: Proceedings of the Eurographics Workshop on Graphics and Cultural Heritage, pp. 155–164. Eurographics Association (2014)

    Google Scholar 

  101. Sipiran, I.: Analysis of partial axial symmetry on 3d surfaces and its application in the restoration of cultural heritage objects. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 2925–2933 (2017)

    Google Scholar 

  102. Sipiran, I.: Completion of cultural heritage objects with rotational symmetry. In: Proceedings of the 11th Eurographics Workshop on 3D Object Retrieval, 3DOR ’18, pp. 87–93. Eurographics Association (2018)

    Google Scholar 

  103. Sipiran, I., Bustos, B.: Harris 3D: a robust extension of the Harris operator for interest point detection on 3d meshes. The Visual Computer 27, 963–976 (2011). http://dx.doi.org/10.1007/s00371-011-0610-y

  104. Sipiran, I., Bustos, B.: A fully hierarchical approach for finding correspondences in non-rigid shapes. In: 2013 IEEE International Conference on Computer Vision, pp. 817–824 (2013)

    Google Scholar 

  105. Sipiran, I., Bustos, B.: Key-components: detection of salient regions on 3d meshes. Vis. Comput. 29(12), 1319–1332 (2013)

    Google Scholar 

  106. Sipiran, I., Gregor, R., Schreck, T.: Approximate symmetry detection in partial 3d meshes. Comput. Graph. Forum 33(7), 131–140 (2014)

    Google Scholar 

  107. Sipiran, I., Lokoc, J., Bustos, B., Skopal, T.: Scalable 3d shape retrieval using local features and the signature quadratic form distance. Vis. Comput. 33(12), 1571–1585 (2017). https://doi.org/10.1007/s00371-016-1301-5

    Article  Google Scholar 

  108. Sipiran, I., Meruane, R., Bustos, B., Schreck, T., Li, B., Lu, Y., Johan, H.: A benchmark of simulated range images for partial shape retrieval. Vis. Comput. 30(11), 1293–1308 (2014). https://doi.org/10.1007/s00371-014-0937-2

    Article  Google Scholar 

  109. Smedt, Q.D., Wannous, H., Vandeborre, J.P., Guerry, J., Saux, B.L., Filliat, D.: 3D hand gesture recognition using a depth and skeletal dataset. In: Pratikakis, I., Dupont, F., Ovsjanikov, M. (eds.) Eurographics Workshop on 3D Object Retrieval. The Eurographics Association (2017)

    Google Scholar 

  110. Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28(5) (2009)

    Google Scholar 

  111. Sun, Y., Paik, J.K., Koschan, A., Page, D.L., Abidi, M.A.: Point fingerprint: a new 3D object representation scheme. IEEE Trans. Syst. Man Cybern. 33(4), 712–717 (2003)

    Google Scholar 

  112. Tabia, H., Laga, H.: Learning shape retrieval from different modalities. Neurocomputing 253, 24–33 (2017)

    Google Scholar 

  113. Tangelder, J.W.H., Veltkamp, R.C.: A survey of content based 3D shape retrieval methods. Multimedia Tools Appl. 39(3), 441–471 (2008)

    Google Scholar 

  114. Toldo, R., Castellani, U., Fusiello, A.: Visual vocabulary signature for 3D object retrieval and partial matching. In: Spagnuolo, M., Pratikakis, I., Veltkamp, R.C., Theoharis, T. (eds.) Proceedings of the Workshop on 3D Object Retrieval(3DOR), pp. 21–28. Eurographics Association (2009)

    Google Scholar 

  115. Tombari, F., Salti, S., Di Stefano, L.: Unique shape context for 3d data description. In: Proceedings of the ACM Workshop on 3D Object Retrieval, 3DOR ’10, pp. 57–62. ACM, New York, USA (2010). https://doi.org/10.1145/1877808.1877821

  116. Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) Computer Vision - ECCV 2010, pp. 356–369. Springer, Berlin (2010)

    Google Scholar 

  117. Vranic, D.: 3D Model retrieval. Ph.D. Thesis, University of Leipzig (2004)

    Google Scholar 

  118. Wei, L., Huang, Q., Ceylan, D., Vouga, E., Li, H.: Dense human body correspondences using convolutional networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  119. Wessel, R., Blümel, I., Klein, R.: A 3D shape benchmark for retrieval and automatic classification of architectural data. In: Spagnuolo, M., Pratikakis, I., Veltkamp, R.C., Theoharis, T. (eds.) Proceedings of the Workshop on 3D Object Retrieval (3DOR), pp. 53–56. Eurographics Association (2009)

    Google Scholar 

  120. Wolfson, H.J., Rigoutsos, I.: Geometric hashing: an overview. Comput. Sci. Eng. 4, 10–21 (1997)

    Google Scholar 

  121. Wu, H.Y., Wang, L., Luo, T., Zha, H.: 3D shape consistent correspondence by using Laplace-Beltrami spectral embeddings. In: Spencer, S.N., Nakajima, M., Wu, E., Miyata, K., Thalmann, D., Huang, Z. (eds.) Proceedings of the ACM International Conference on Virtual-Reality Continuum and its Applications in Industry, pp. 307–309. ACM (2009)

    Google Scholar 

  122. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3D ShapeNets: a deep representation for volumetric shapes. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1912–1920 (2015)

    Google Scholar 

  123. Xu, G.: Convergent discrete Laplace-Beltrami operators over triangular surfaces. In: Proceedings of the Geometric Modeling and Processing, pp. 195–204. IEEE Computer Society (2004)

    Google Scholar 

  124. Xu, G.: Discrete Laplace-Beltrami operators and their convergence. Comput. Aided Geom. Des. 21, 767–784 (2004)

    MathSciNet  MATH  Google Scholar 

  125. Yeh, J.S., Chen, D.Y., Chen, B.Y., Ouhyoung, M.: A web-based three-dimensional protein retrieval system by matching visual similarity. Bioinformatics 21(13), 3056–3057 (2005)

    Google Scholar 

  126. You, C.F., Tsai, Y.L.: 3D solid model retrieval for engineering reuse based on local feature correspondence. Int. J. Adv. Manuf. Technol. 46(5–8), 649–661 (2009)

    Google Scholar 

  127. Zhou, X., Seibert, H., Busch, C., Funk, W.: A 3D face recognition algorithm using histogram-based features. In: Perantonis, S.J., Sapidis, N., Spagnuolo, M., Thalmann, D. (eds.) Proceedings of the Workshop on 3D Object Retrieval (3DOR), pp. 65–71. Eurographics Association (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Bustos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bustos, B., Sipiran, I. (2020). 3D Shape Matching for Retrieval and Recognition. In: Liu, Y., Pears, N., Rosin, P.L., Huber, P. (eds) 3D Imaging, Analysis and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-44070-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44070-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44069-5

  • Online ISBN: 978-3-030-44070-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics