Skip to main content

Diagnosis of Trypanosoma cruzi Infection: Challenges on Laboratory Tests Development and Applications

  • Chapter
  • First Online:
Chagas Disease

Abstract

Insufficient access to diagnosis is yet a major issue to control Chagas disease. Therefore, there is an urgent need of more practical diagnostics and/or diagnostic algorithms that better suit the demands and field conditions, mainly of endemic regions. Such diagnostics should be made available not only to easily detect acute and chronic cases of T. cruzi infection, but also to inform on treatment efficacy and on the evolution of transplanted patients. In this chapter, we first provide a description of the laboratory techniques used for the diagnosis of the disease. We then point out the latest research advancements in the field. Ultimately, we discuss on whether the implementation of these advancements could aid to overcome the challenges faced today by currently available tools in endemic and non-endemic settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balouz V, Agüero F, Buscaglia CA. Chagas disease diagnostic applications: present knowledge and future steps. Adv Parasitol. 2017;97:1–45.

    PubMed  CAS  Google Scholar 

  2. Alonso-Padilla J, Gallego M, Schijman AG, et al. Molecular diagnostics for Chagas disease: up to date and novel methodologies. Expert Rev Mol Diagn. 2017;17:669–710.

    Google Scholar 

  3. Pinazo MJ, Thomas MC, Bua J, et al. Biological markers for evaluating therapeutic efficacy in Chagas disease, a systematic review. Expert Rev Anti Infect Ther. 2014;12:479–96.

    PubMed  CAS  Google Scholar 

  4. World Health Organization Expert Committee. Control of Chagas disease. WHO technical report series number 905. Brazilia: WHO; 2002.

    Google Scholar 

  5. Flores-Chávez M, de Fuentes I, Gárate T, et al. Diagnóstico de laboratorio de la enfermedad de Chagas importada. Enferm Infecc Microbiol Clin. 2007;25:29–37.

    Google Scholar 

  6. Feilij H, Muller L, Gonzalez Cappa SM. Direct micromethod for diagnosis of acute and congenital Chagas’ disease. J Clin Microbiol. 1983;18:327–30.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Torrico MC, Solano M, Guzman JM, et al. Estimation of the parasitemia in Trypanosoma cruzi human infection: high parasitemias are associated with severe and fatal congenital Chagas disease. Rev Soc Bras Med Trop. 2005;38(Suppl 2):58–61.

    PubMed  Google Scholar 

  8. Carlier Y, Torrico F. Congenital infection with Trypanosyma cruzi: from mecahnisms of transmission to strategies for diagnosis and control. Rev Soc Bras Med Trop. 2003;36:767–71.

    Google Scholar 

  9. Uc-Cetina V, Brito-Loeza C, Ruiz-Piña H. Chagas parasite detection in blood images using AdaBoost. Comput Math Methods Med. 2015;2015:139681.

    PubMed  PubMed Central  Google Scholar 

  10. Torrico MC, Solano MA, Córdova M, et al. Diagnóstico parasitológico de la enfermedad de Chagas: de la teoría a la práctica. Enf Emerg. 2011;13(Suppl 1):33–8.

    Google Scholar 

  11. Persing DH. Polymerase chain reaction: trenches to benches. J Clin Microbiol. 1991;29:1281–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Virreira M, Torrico F, Truyens C, et al. Comparison of polymerase chain reaction methods for reliable and easy detection of congenital Trypanosoma cruzi infection. Am J Trop Med Hyg. 2003;68:574–82.

    PubMed  CAS  Google Scholar 

  13. Moser DR, Kirchhoff LV, Donelson JE. Detection of Trypanosoma cruzi by DNA amplification using the polymerase chain reaction. J Clin Microbiol. 1989;27:1477–82.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Burgos JM, Diez M, Vigliano C, et al. Molecular identification of Trypanosoma cruzi discrete typing units in end-stage chronic Chagas heart disease and reactivation after heart transplantation. Clin Infect Dis. 2010;51:485–95.

    PubMed  CAS  Google Scholar 

  15. Diez M, Favaloro L, Bertolotti A, et al. Usefulness of PCR strategies for early diagnosis of Chagas’ disease reactivation and treatment follow-up in heart transplantation. Am J Transplant. 2007;7:1633–40.

    PubMed  CAS  Google Scholar 

  16. Hernández C, Teherán A, Flórez C, et al. Comparison of parasite loads in serum and blood samples from patients in acute and chronic phases of Chagas disease. Parasitology. 2018;145:1837–43.

    PubMed  Google Scholar 

  17. Qvarnstrom Y, Schijman AG, Veron V, et al. Sensitive and specific detection of Trypanosoma cruzi DNA in clinical specimens using a multi-target real-time PCR approach. PLoS Negl Trop Dis. 2012;6:e1689.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Russomando G, Figueredo A, Almiron M, et al. Polymerase chain reaction-based detection of Trypanosoma cruzi DNA in serum. J Clin Microbiol. 1992;30:2864–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Schijman AG, Bisio M, Orellana L, et al. International study to evaluate PCR methods for detection of Trypanosoma cruzi DNA in blood samples from Chagas disease patients. PLoS Negl Trop Dis. 2011;5:e931.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Wincker P, Britto C, Pereira JB, et al. Use of a simplified polymerase chain reaction procedure to detect Trypanosoma cruzi in blood samples from chronic chagasic patients in a rural endemic area. Am J Trop Med Hyg. 1994;51:771–7.

    PubMed  CAS  Google Scholar 

  21. Brasil PE, De Castro L, Hasslocher-Moreno AM, et al. ELISA versus PCR for diagnosis of chronic Chagas disease: systematic review and meta-analysis. BMC Infect Dis. 2010;10:337.

    PubMed  PubMed Central  Google Scholar 

  22. Abras A, Ballart C, Llovet T, et al. Introducing automation to the molecular diagnosis of Trypanosoma cruzi infection: a comparative study of sample treatments, DNA extraction methods and real-time PCR assays. PLoS One. 2018;13:e0195738.

    PubMed  PubMed Central  Google Scholar 

  23. Schijman AG. Molecular diagnosis of Trypanosoma cruzi. Acta Trop. 2018;184:59–66.

    PubMed  CAS  Google Scholar 

  24. Avila HA, Pereira JB, Thiemann O, et al. Detection of Trypanosoma cruzi in blood specimens of chronic chagasic patients by polymerase chain reaction amplification of kinetoplast minicircle DNA: comparison with serology and xenodiagnosis. J Clin Microbiol. 1993;31:2421–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Schijman AG, Altcheh J, Burgos JM, et al. Aetiological treatment of congenital Chagas’ disease diagnosed and monitored by the polymerase chain reaction. J Antimicrob Chemother. 2003;52:441–9.

    PubMed  CAS  Google Scholar 

  26. Ochs DE, Hnilica VS, Moser DR, et al. Postmortem diagnosis of autochthonous acute chagasic myocarditis by polymerase chain reaction amplification of a species-specific DNA sequence of Trypanosoma cruzi. Am J Trop Med Hyg. 1996;54:526–9.

    PubMed  CAS  Google Scholar 

  27. Marcon GEB, Andrade PD, De Albuquerque DM, et al. Use of a nested polymerase chain reaction (N-PCR) to detect Trypanosoma cruzi in blood samples from chronic chagasic patients and patients with doubtful serologies. Diagn Microbiol Infect Dis. 2002;42:39–43.

    Google Scholar 

  28. Duffy T, Cura CI, Ramirez JC, et al. Analytical performance of a multiplex real-time PCR assay using TaqMan probes for quantification of Trypanosoma cruzi satellite DNA in blood samples. PLoS Negl Trop Dis. 2013;7:e2000.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Duffy T, Bisio M, Altcheh J, et al. Accurate real-time PCR strategy for monitoring bloodstream parasitic loads in Chagas disease patients. PLoS Negl Trop Dis. 2009;3:e419.

    PubMed  PubMed Central  Google Scholar 

  30. Piron M, Fisa R, Casamitjana N, et al. Development of a real-time PCR assay for Trypanosoma cruzi detection in blood samples. Acta Trop. 2007;103:195–200.

    PubMed  CAS  Google Scholar 

  31. Ramírez JC, Cura CI, da Cruz Moreira O, et al. Analytical validation of quantitative real-time PCR methods for quantification of Trypanosoma cruzi DNA in blood samples from chagas disease patients. J Mol Diagn. 2015;17:605–15.

    PubMed  PubMed Central  Google Scholar 

  32. Picado A, Cruz I, Redard-Jacot M, et al. The burden of congenital Chagas disease and implementation of molecular diagnostic tools in Latin America. BMJ Glob Health. 2018;3:e001069.

    PubMed  PubMed Central  Google Scholar 

  33. Cura CI, Lattes R, Nagel C, et al. Early molecular diagnosis of acute chagas disease after transplantation with organs from Trypanosoma cruzi-infected donors. Am J Transplant. 2013;13:3253–61.

    PubMed  CAS  Google Scholar 

  34. Benvenuti LA, Roggério A, Cavalcanti MM, et al. An autopsy-based study of Trypanosoma cruzi persistence in organs of chronic chagasic patients and its relevance for transplantation. Transpl Infect Dis. 2017;19(6).

    Google Scholar 

  35. Chin-Hong PV, Schwartz BS, Bern C, et al. Screening and treatment of Chagas disease in organ transplant recipients in the United States: recommendations from the chagas in transplant working group. Am J Transplant. 2011;11:672–80.

    PubMed  CAS  Google Scholar 

  36. Brasil PE, Castro R, Castro LD. Commercial enzyme-linked immunosorbent assay versus polymerase chain reaction for the diagnosis of chronic Chagas disease: a systematic review and meta-analysis. Mem Inst Oswaldo Cruz. 2016;111:1–19.

    PubMed  PubMed Central  Google Scholar 

  37. Moreira OC, Ramírez JD, Velázquez E, et al. Towards the establishment of a consensus real-time qPCR to monitor Trypanosoma cruzi parasitemia in patients with chronic Chagas disease cardiomyopathy: a substudy from the BENEFIT trial. Acta Trop. 2013;125:23–31.

    PubMed  CAS  Google Scholar 

  38. Parrado R, Ramirez JC, de la Barra A, et al. Real-time PCR for the evaluation of treatment response in clinical trials of adult chronic Chagas disease: usefulness of serial blood sampling and qPCR replicates. Antimicrob Agents Chemother. 2018. pii: AAC.01191-18.

    Google Scholar 

  39. Britto CC. Usefulness of PCR-based assays to assess drug efficacy in Chagas disease chemotherapy: value and limitations. Mem Inst Oswaldo Cruz. 2009;104:122–35.

    PubMed  CAS  Google Scholar 

  40. Cancino-Faure B, Fisa R, Alcover MM, et al. Detection and quantification of viable and nonviable Trypanosoma cruzi parasites by a propidium monoazide real-time polymerase chain reaction assay. Am J Trop Med Hyg. 2016;94:1282–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Juiz NA, Solana ME, Acevedo GR, et al. Different genotypes of Trypanosoma cruzi produce distinctive placental environment genetic response in chronic experimental infection. PLoS Negl Trop Dis. 2017;11:e0005436.

    PubMed  PubMed Central  Google Scholar 

  42. Ramírez JC, Torres C, Curto MLA, et al. New insights into Trypanosoma cruzi evolution, genotyping and molecular diagnostics from satellite DNA sequence analysis. PLoS Negl Trop Dis. 2017;11:e0006139.

    PubMed  PubMed Central  Google Scholar 

  43. Organización Panamericana de la Salud (OPS). Guía para el diagnóstico y el tratamiento de la enfermedad de Chagas. Washington, DC: Estados Unidos de América; 2018.

    Google Scholar 

  44. World Health Organization. Anti-Trypanosoma cruzi ASSAYS: operational characteristics. Report 1. Geneva: WHO; 2010.

    Google Scholar 

  45. Abras A, Gállego M, Llovet T, et al. Serological diagnosis of chronic Chagas disease: is it time for a change? J Clin Microbiol. 2016;54:1566–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Pérez-Ayala A, Fradejas I, Rebollo L, et al. Usefulness of the ARCHITECT Chagas® assay as a single test for the diagnosis of chronic Chagas disease. Trop Med Int Health. 2018;23:634–40.

    PubMed  Google Scholar 

  47. Caballero ZC, Sousa OE, Marques WP, et al. Evaluation of serological tests to identify Trypanosoma cruzi infection in humans and determine cross-reactivity with Trypanosoma rangeli and Leishmania spp. Clin Vaccine Immunol. 2007;14:1045–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Viotti R, Alarcón De Noya B, Araujo-Jorge T, et al. Towards a paradigm shift in the treatment of chronic Chagas disease. Antimicrob Agents Chemother. 2014;58:635–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Porrás AI, Yadon ZE, Altcheh J, et al. Target product profile (TPP) for Chagas disease point-of-care diagnosis and assessment of response to treatment. PLoS Negl Trop Dis. 2015;9:e0003697.

    PubMed  PubMed Central  Google Scholar 

  50. Carlier Y, Sosa-Estani S, Luquetti AO, et al. Congenital Chagas disease: an update. Mem Inst Oswaldo Cruz. 2015;110:363–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Carlier Y, Torrico F, Sosa-Estani S, et al. Congenital Chagas disease: recommendations for diagnosis, treatment and control of newborns, siblings and pregnant women. PLoS Negl Trop Dis. 2011;5:e1250.

    PubMed  PubMed Central  Google Scholar 

  52. Abras A, Muñoz C, Ballart C, et al. Towards a new strategy for diagnosis of congenital Trypanosoma cruzi infection. J Clin Microbiol. 2017;55:1396–407.

    PubMed  PubMed Central  Google Scholar 

  53. United States National Library of Science. “Search of Condition or disease”: “Chagas disease”. https://clinicaltrials.gov/.

  54. Seiringer P, Pritsch M, Flores-Chavez M, et al. Comparison of four PCR methods for efficient detection of Trypanosoma cruzi in routine diagnostics. Diagn Microbiol Infect Dis. 2017;88:225–32.

    PubMed  CAS  Google Scholar 

  55. Torrico F, Gascon J, Ortiz L, et al. Treatment of adult chronic indeterminate Chagas disease with benznidazole and three E1224 dosing regimens: a proof-of-concept, randomised, placebo-controlled trial. Lancet Infect Dis. 2018;18:419–30.

    PubMed  CAS  Google Scholar 

  56. Ramírez JD, Herrera G, Hernández C, et al. Evaluation of the analytical and diagnostic performance of a digital droplet polymerase chain reaction (ddPCR) assay to detect Trypanosoma cruzi DNA in blood samples. PLoS Negl Trop Dis. 2018;12:e0007063.

    PubMed  PubMed Central  Google Scholar 

  57. Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28:E63.

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Thekisoe OM, Rodriguez CV, Rivas F, et al. Detection of Trypanosoma cruzi and T. rangeli infections from Rhodnius pallescens bugs by loop-mediated isothermal amplification (LAMP). Am J Trop Med Hyg. 2010;82:855–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Rivero R, Bisio M, Velázquez EB, et al. Rapid detection of Trypanosoma cruzi by colorimetric loop-mediated isothermal amplification (LAMP): a potential novel tool for the detection of congenital Chagas infection. Diagn Microbiol Infect Dis. 2017;89:26–8.

    PubMed  CAS  Google Scholar 

  60. Besuschio SA, Llano Murcia M, et al. Analytical sensitivity and specificity of a loop-mediated isothermal amplification (LAMP) kit prototype for detection of Trypanosoma cruzi DNA in human blood samples. PLoS Negl Trop Dis. 2017;11:e0005779.

    PubMed  PubMed Central  Google Scholar 

  61. Besuschio SA, Muñoz-Calderón A, Fernández M, et al. LAMP y Enfermedad de Chagas: detección de ADN de T. cruzi y monitoreo de tratamiento en brote por transmisión oral y reactivación por inmunocompromiso. In: Libro de Resúmenes, XXX Reunión Annual de la Sociedad Argentina de Protozoología; 2018. p. 91.

    Google Scholar 

  62. Jimenez-Coello M, Shelite T, Castellanos-Gonzalez A, et al. Efficacy of recombinase polymerase amplification to diagnose Trypanosoma cruzi infection in dogs with cardiac alterations from an endemic area of Mexico. Vector-Borne Zoonotic Dis. 2018;18:417–23.

    PubMed  Google Scholar 

  63. Kanwar JR, Roy K, Maremanda NG, et al. Nucleic acid-based aptamers: applications, development and clinical trials. Curr Med Chem. 2010;22:2539–57.

    Google Scholar 

  64. Nagarkatti R, de Araujo FF, Gupta C, et al. Aptamer based, non-PCR, non-serological detection of Chagas disease biomarkers in Trypanosoma cruzi infected mice. PLoS Negl Trop Dis. 2014;8:e2650.

    PubMed  PubMed Central  Google Scholar 

  65. Umezawa ES, Luquetti AO, Levitus G, et al. Serodiagnosis of chronic and acute Chagas’ disease with Trypanosoma cruzi recombinant proteins: results of a collaborative study in six Latin American countries. J Clin Microbiol. 2004;42:449–52.

    PubMed  PubMed Central  Google Scholar 

  66. Flechas ID, Cuellar A, Cucunubá ZM, et al. Characterising the KMP-11 and HSP-70 recombinant antigens’ humoral immune response profile in chagasic patients. BMC Infect Dis. 2009;9:186.

    PubMed  PubMed Central  Google Scholar 

  67. Longhi SA, Brandariz SB, Lafon SO, et al. Evaluation of in-house ELISA using Trypanosoma cruzi lysate and recombinant antigens for diagnosis of Chagas disease and discrimination of its clinical forms. Am J Trop Med Hyg. 2012;87:267–71.

    PubMed  PubMed Central  Google Scholar 

  68. Vasconcelos RH, Amaral FN, Cavalcanti MG, et al. Increased levels of IgA antibodies against CRA and FRA recombinant antigens of Trypanosoma cruzi differentiate digestive forms of Chagas disease. Hum Immunol. 2010;71:964–7.

    PubMed  CAS  Google Scholar 

  69. Verani JR, Seitz A, Gilman RH, et al. Geographie variation in the sensitivity of recombinant antigen-based rapid tests for chronic Trypanosoma cruzi infection. Am J Trop Med Hyg. 2009;80:410–5.

    PubMed  Google Scholar 

  70. Granjon E, Dichtel-Danjoy ML, Saba E, et al. Development of a novel multiplex immunoassay multi-cruzi for the serological confirmation of Chagas disease. PLoS Negl Trop Dis. 2016;10:e0004596.

    PubMed  PubMed Central  Google Scholar 

  71. Mucci J, Carmona SJ, Volcovich R, et al. Next-generation ELISA diagnostic assay for Chagas disease based on the combination of short peptidic epitopes. PLoS Negl Trop Dis. 2017;11:e0005972.

    PubMed  PubMed Central  Google Scholar 

  72. Santos FL, Celedon PA, Zanchin NI, et al. Performance assessment of four chimeric Trypanosoma cruzi antigens based on antigen-antibody detection for diagnosis of chronic chagas disease. PLoS One. 2016;11:e0161100.

    PubMed  PubMed Central  Google Scholar 

  73. Santos FL, Celedon PA, Zanchin NI, et al. Accuracy of chimeric proteins in the serological diagnosis of chronic Chagas disease—a phase II study. PLoS Negl Trop Dis. 2017;11:e0005433.

    PubMed  PubMed Central  Google Scholar 

  74. Santos FL, Celedon PA, Zanchin NI, et al. Performance assessment of a Trypanosoma cruzi chimeric antigen in multiplex liquid microarray assays. J Clin Microbiol. 2017;55:2934–45.

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Villagrán-Herrera ME, Sánchez-Moreno M, Rodríguez-Méndez AJ, et al. Comparative serology techniques for the diagnosis of Trypanosoma cruzi infection in a rural population from the state of Querétaro, Mexico. Mem Inst Oswaldo Cruz. 2014;109:967–72.

    PubMed  Google Scholar 

  76. Vega Benedetti AF, Cimino RO, Cajal PS, et al. Performance of different Trypanosoma cruzi antigens in the diagnosis of Chagas disease in patients with American cutaneous leishmaniasis from a co-endemic region in Argentina. Trop Med Int Health. 2013;18:1103–9.

    PubMed  CAS  Google Scholar 

  77. da Silveira JF, Umezawa ES, Luquetti AO. Chagas disease: recombinant Trypanosoma cruzi antigens for serological diagnosis. Trends Parasitol. 2001;17:286–91.

    PubMed  Google Scholar 

  78. Frasch AC. Trans-sialidase, SAPA amino acid repeats and the relationship between Trypanosoma cruzi and the mammalian host. Parasitology. 1994;108(Suppl):S37–44.

    PubMed  Google Scholar 

  79. Goto Y, Carter D, Reed SG. Immunological dominance of Trypanosoma cruzi tandem repeat proteins. Infect Immun. 2008;76:3967–74.

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Schofield L. On the function of repetitive domains in protein antigens of Plasmodium and other eukaryotic parasites. Parasitol Today. 1991;7:99–105.

    PubMed  CAS  Google Scholar 

  81. Alvarez P, Leguizamón MS, Buscaglia CA, et al. Multiple overlapping epitopes in the repetitive unit of the shed acute-phase antigen from Trypanosoma cruzi enhance its immunogenic properties. Infect Immun. 2001;69:7946–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Cazzulo JJ, Frasch AC. SAPA/trans-sialidase and cruzipain: two antigens from Trypanosoma cruzi contain immunodominant but enzymatically inactive domains. FASEB J. 1992;6:3259–64.

    PubMed  CAS  Google Scholar 

  83. Buscaglia CA, Alfonso J, Campetella O, et al. Tandem amino acid repeats from Trypanosoma cruzi shed antigens increase the half-life of proteins in blood. Blood. 1999;93:2025–32.

    PubMed  CAS  Google Scholar 

  84. Pitcovsky TA, Buscaglia CA, Mucci J, et al. A functional network of intramolecular cross-reacting epitopes delays the elicitation of neutralizing antibodies to Trypanosoma cruzi trans-sialidase. J Infect Dis. 2002;186:397–404.

    PubMed  CAS  Google Scholar 

  85. Reyes MB, Lorca M, Muñoz P, et al. Fetal IgG specificities against Trypanosoma cruzi antigens in infected newborns. Proc Natl Acad Sci U S A. 1990;87:2846–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Volta BJ, Russomando G, Bustos PL, et al. Diagnosis of congenital Trypanosoma cruzi infection: a serologic test using shed acute phase antigen (SAPA) in mother-child binomial samples. Acta Trop. 2015;147:31–7.

    PubMed  Google Scholar 

  87. El-Sayed NM, Myler PJ, Bartholomeu DC, et al. The genome sequence of Trypanosoma cruzi, etiologic agent of chagas disease. Science. 2005;309:409–15.

    PubMed  CAS  Google Scholar 

  88. Bartholomeu DC, Cerqueira GC, Leão ACA, et al. Genomic organization and expression profile of the mucin-associated surface protein (masp) family of the human pathogen Trypanosoma cruzi. Nucleic Acids Res. 2009;37:3407–17.

    PubMed  PubMed Central  CAS  Google Scholar 

  89. De Pablos LM, González GG, Solano Parada J, et al. Differential expression and characterization of a member of the mucin-associated surface protein family secreted by Trypanosoma cruzi. Infect Immun. 2011;79:3993–4001.

    PubMed  PubMed Central  Google Scholar 

  90. Ashmus RA, Schocker NS, Cordero-Mendoza Y, et al. Potential use of synthetic α-galactosyl-containing glycotopes of the parasite Trypanosoma cruzi as diagnostic antigens for Chagas disease. Org Biomol Chem. 2013;11:5579–83.

    PubMed  CAS  Google Scholar 

  91. Izquierdo L, Marques AF, Gállego M, et al. Evaluation of a chemiluminescent enzyme-linked immunosorbent assay for the diagnosis of Trypanosoma cruzi infection in a nonendemic setting. Mem Inst Oswaldo Cruz. 2013;108:928–31.

    PubMed  PubMed Central  Google Scholar 

  92. Otani MM, Vinelli E, Kirchhoff LV, et al. WHO comparative evaluation of serologic assays for Chagas disease. Transfusion. 2009;49:1076–82.

    PubMed  Google Scholar 

  93. WHO Technical Report Series—Research priorities for Chagas disease, human African trypanosomiasis and leishmaniasis. WHO Special Programme for Research and Training in Tropical Diseases [TDR], 2012 (975): p. v–xii, 1–100.

    Google Scholar 

  94. Médecins Sans Frontières. Campaign for Access to Essential Medicines. International meeting: new diagnostic tests are urgently needed to treat patients with Chagas disease. Rev Soc Bras Med Trop. 2008;41:315–9.

    Google Scholar 

  95. Egüez KE, Alonso-Padilla J, Terán C, et al. Rapid diagnostic tests duo as alternative to conventional serological assays for conclusive Chagas disease diagnosis. PLoS Negl Trop Dis. 2017;11:e0005501.

    PubMed  PubMed Central  Google Scholar 

  96. Sánchez-Camargo CL, Albajar-Viñas P, Wilkins PP, et al. Comparative evaluation of 11 commercialized rapid diagnostic tests for detecting Trypanosoma cruzi antibodies in serum banks in areas of endemicity and nonendemicity. J Clin Microbiol. 2014;52:2506–12.

    PubMed  PubMed Central  Google Scholar 

  97. Shah V, Ferrufino L, Gilman RH, et al. Field evaluation of the InBios Chagas detect plus rapid test in serum and whole-blood specimens in Bolivia. Clin Vaccine Immunol. 2014;21:1645–9.

    PubMed  PubMed Central  Google Scholar 

  98. Roddy P, Goiri J, Flevaud L, et al. Field evaluation of a rapid immunochromatographic assay for detection of Trypanosoma cruzi infection by use of whole blood. J Clin Microbiol. 2008;46:2022–7.

    PubMed  PubMed Central  Google Scholar 

  99. Mendicino D, Colussi C, Moretti E. Simultaneous use of two rapid diagnostic tests for the diagnosis of Chagas disease. Trop Doct. 2018;27:49475518813792.

    Google Scholar 

  100. Castro-Sesquen YE, Gilman RH, Galdos-Cardenas G, et al. Use of a novel Chagas urine nanoparticle test (Chunap) for diagnosis of congenital Chagas disease. PLoS Negl Trop Dis. 2014;8:e3211.

    PubMed  PubMed Central  Google Scholar 

  101. Morillo CA, Marin-Neto JA, Avezum A, et al. Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N Engl J Med. 2015;373:1295–306.

    PubMed  CAS  Google Scholar 

  102. Álvarez MG, Hernández Y, Bertocchi G, et al. New scheme of intermittent benznidazole administration in patients chronically infected with Trypanosoma cruzi: a pilot short-term follow-up study with adult patients. Antimicrob Agents Chemother. 2016;60:833–7.

    PubMed  PubMed Central  Google Scholar 

  103. Morillo CA, Waskin H, Sosa-Estani S, et al. Benznidazole and posaconazole in eliminating parasites in asymptomatic T. cruzi carriers: the STOP-CHAGAS trial. J Am Coll Cardiol. 2017;69:939–47.

    PubMed  CAS  Google Scholar 

  104. Sánchez-Valdéz FJ, Padilla A, Wang W, et al. Spontaneous dormancy protects Trypanosoma cruzi during extended drug exposure. Elife. 2018;7:e34039.

    PubMed  PubMed Central  Google Scholar 

  105. Pinazo MJ, Gascon J. The importance of the multidisciplinary approach to deal with the new epidemiological scenario of Chagas disease (global health). Acta Trop. 2015;151:16–20.

    PubMed  Google Scholar 

  106. Bua J, Volta BJ, Velazquez EB, et al. Vertical transmission of Trypanosoma cruzi infection: quantification of parasite burden in mothers and their children by parasite DNA amplification. Trans R Soc Trop Med Hyg. 2012;106:623–8.

    PubMed  CAS  Google Scholar 

  107. Bua J, Volta BJ, Perrone AE, et al. How to improve the early diagnosis of Trypanosoma cruzi infection: relationship between validated conventional diagnosis and quantitative DNA amplification in congenitally infected children. PLoS Negl Trop Dis. 2013;7:e2476.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Alonso-Padilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gállego, M., Schijman, A.G., Alonso-Padilla, J. (2020). Diagnosis of Trypanosoma cruzi Infection: Challenges on Laboratory Tests Development and Applications. In: Pinazo Delgado, MJ., Gascón, J. (eds) Chagas Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-44054-1_5

Download citation

Publish with us

Policies and ethics