Skip to main content

Fast Collision Detection for Motion Planning Using Shape Primitive Skeletons

  • 476 Accesses

Part of the Springer Proceedings in Advanced Robotics book series (SPAR,volume 14)

Abstract

In many robotics applications, the environment (robots and obstacles) often have very complex geometries. These result in expensive primitive computations such as collision detection which in turn, affect the overall performance of these applications. Approximating the geometry is a common approach to optimize computation. Unlike other applications of geometric approximation where it is applied to one space (usually obstacle space), we approximate both obstacle and free workspace with a set of geometric shape primitives that are completely contained within the space and represent its topology (skeleton). We use these “shape primitive skeletons” to improve collision detection performance in motion planning algorithms. Our results show that the use of shape primitive skeletons improves the performance of standard collision detection methods in motion planning problems by 20–70% in our 2D and 3D test environments regardless of motion planning strategy. We also show how the same shape primitive skeletons can be used with robots of different sizes to improve the performance of collision detection operation.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-44051-0_3
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-44051-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   379.99
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. Cgal, Computational Geometry Algorithms Library (1997). https://www.cgal.org/

  2. Amato, N.M., Wu, Y.: A randomized roadmap method for path and manipulation planning. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 113–120 (1996)

    Google Scholar 

  3. Bayani, H., Masouleh, M.T., Karimi, A., Cardou, P., Ebrahimi, M.: On the determination of the maximal inscribed ellipsoid in the wrench-feasible workspace of the cable-driven parallel robots. In: 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), pp. 422–427 (2014)

    Google Scholar 

  4. Bialkowski, J., Otte, M., Frazzoli, E.: Free-configuration biased sampling for motion planning. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 1272–1279 (2013)

    Google Scholar 

  5. Bialkowski, J., Otte, M., Karaman, S., Frazzoli, E.: Efficient collision checking in sampling-based motion planning via safety certificates. Int. J. Robot. Res. 35(7), 767–796 (2016)

    CrossRef  Google Scholar 

  6. Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)

    Google Scholar 

  7. Brock, O., Kavraki, L.: Decomposition-based motion planning: a framework for real-time motion planning in high-dimensional configuration places. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1469–1475 (2001)

    Google Scholar 

  8. Conway, J.H., Sloane, N.J.H.: Sphere Packings, Lattices and Groups, 3rd edn. Springer Science and Business Media, New York (1998)

    Google Scholar 

  9. Deits, R., Tedrake, R.: Computing large convex regions of obstacle-free space through semi-definite programming. In: Akin, H., Amato, N., Isler, V., van der Stappen, A. (eds.) Algorithmic Foundations of Robotics XI. Springer, Cham (2014)

    Google Scholar 

  10. Denny, J., Amato, N.M.: Toggle PRM: a coordinated mapping of C-free and C-obstacle in arbitrary dimension. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics X. Springer Tracts in Advanced Robotics, vol. 86, pp. 297–312. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  11. Gottschalk, S., Lin, M.C., Manocha, D.: OBB-tree: a hierarchical structure for rapid interference detection. Comput. Graph. 30, 171–180 (1996). Proceedings of the SIGGRAPH 1996

    Google Scholar 

  12. Hubbard, P.M.: Approximating polyhedra with spheres for time-critical collision detection. ACM Trans. Graph. 15(3), 179–210 (1996)

    CrossRef  Google Scholar 

  13. Kallrath, J.: Packing ellipsoids into volume-minimizing rectangular boxes. J. Global Optim. 67, 151–185 (2017)

    MathSciNet  CrossRef  Google Scholar 

  14. Kavraki, L.E., Švestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    CrossRef  Google Scholar 

  15. Klosowski, J., Held, M., Mitchell, J.S.B., Zikan, K., Sowizral, H.: Efficient collision detection using bounding volume hierarchies of \(k\)-DOPs. IEEE Trans. Vis. Comput. Graph. 4(1), 21–36 (1998)

    CrossRef  Google Scholar 

  16. Lacevic, B., Osmankovic, D., Ademovic, A.: Burs of free C-space: a novel structure for path planning. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 70–76 (2016)

    Google Scholar 

  17. Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D.: Fast distance queries with rectangular swept sphere volumes. In: IEEE International Conference on Robotics and Automation (ICRA), vol. 4, pp. 3719–3726 (2000)

    Google Scholar 

  18. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)

    CrossRef  Google Scholar 

  19. Li, S., Zhao, J., Lu, P., Xie, Y.: Maximum packing densities of basic 3d objects. Chin. Sci. Bull. 55(2), 114–119 (2010)

    CrossRef  Google Scholar 

  20. Schneider, D., Schömer, E., Wolpert, N.: Collision detection for 3d rigid body motion planning with narrow passages. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 4365–4370 (2017)

    Google Scholar 

  21. Schwarzer, F., Saha, M., Latombe, J.C.: Exact collision checking of robot paths. In: Boissonnat, J.D., Burdick, J., Goldberg, K., Hutchinson, S. (eds.) Algorithmic Foundations of Robotics V, pp. 25–41. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  22. Stolpner, S., Kry, P., Siddiqi, K.: Medial spheres for shape approximation. IEEE Trans. Pattern Anal. Mach. Intell. 34(6), 1234–1240 (2012)

    CrossRef  Google Scholar 

  23. Tagliasacchi, A., Alhashim, I., Olson, M., Zhang, H.: Mean curvature skeletons. Comput. Graph. Forum 31(5), 1735–1744 (2012)

    CrossRef  Google Scholar 

  24. Tu, C., Yu, L.: Research on collision detection algorithm based on AABB-OBB bounding volume. In: 2009 First International Workshop on Education Technology and Computer Science, vol. 1, pp. 331–333 (2009)

    Google Scholar 

  25. Weller, R., Zachmann, G.: Inner sphere trees for proximity and penetration queries. In: Robotics: Science and Systems, vol. 2 (2009)

    Google Scholar 

  26. Yang, Y., Brock, O.: Adapting the sampling distribution in PRM planners based on an approximated medial axis. In: IEEE International Conference on Robotics and Automation (ICRA), vol. 5, pp. 4405–4410 (2004)

    Google Scholar 

  27. Yershova, A., Jaillet, L., Simeon, T., Lavalle, S.M.: Dynamic-domain RRTs: efficient exploration by controlling the sampling domain. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3856–3861 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukulika Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Ghosh, M., Thomas, S., Amato, N.M. (2020). Fast Collision Detection for Motion Planning Using Shape Primitive Skeletons. In: Morales, M., Tapia, L., Sánchez-Ante, G., Hutchinson, S. (eds) Algorithmic Foundations of Robotics XIII. WAFR 2018. Springer Proceedings in Advanced Robotics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-44051-0_3

Download citation