Skip to main content

Benchmark Study Results: Hydro-Québec

  • Chapter
  • First Online:
Diagnosis & Prognosis of AAR Affected Structures

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 31))

  • 289 Accesses

Abstract

The model used by Hydro-Québec Production was developed targeting large hydraulic structures such as dams. It is used by engineers to determine if the hydraulic structures are safe despite the presence of the alkali-aggregate reaction and to predict the long-term behavior as well as its performance for different loading scenarios including seismic loads. The model may use simplifying assumptions to reduce the number of parameters while ensuring that these assumptions are on the conservative side. The code was developed to be embedded inside the finite element software ANSYS using User Programmable Features (UPF). The approach used to implement all the physics required to model AAR in hydraulic structures and to ensure the greatest flexibility while remaining within the framework provided by the commercial software is to program a new element type (commonly named UserElement).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saouma, V., Perotti, L.: Constitutive model for alkali aggregate reactions. ACI Mater. J. 103(3), 194–202 (2006)

    Google Scholar 

  2. Larive, C.: Apports combinés de l’experimentation et de la modélisation à la comprehension del’Alcali-Réaction et de ses Effets Mécaniques. PhD thesis (1998). Paris: Laboratoire Central des Ponts et Chaussées. https://hal.inria.fr/docs/00/52/06/76/PDF/1997TH_LARIVE_C_NS20683.pdf

  3. Ulm, F., Coussy, O., Li, K., Larive, C.: Thermo-chemo-mechanics of ASR expansion in concrete structures. ASCE J. Eng. Mech. 126(3), 233–242 (2000)

    Article  Google Scholar 

  4. Liaudat, J., Carol, I., López, C.M., Saouma, V.: ASR expansions in concrete under triaxial confinement. Cem. Concr. Compos. 86, 160–170 (2018)

    Article  Google Scholar 

  5. Comi, C., Pignatelli, R.: A three-phase model for damage induced by asr in con-crete structures. In: IV International Conference on Computational Methods for Coupled Problems in Science and Engineering (2011)

    Google Scholar 

  6. Grassl, P., Xenos, D., Nyström, D., Rempling, R., Gylltoft, K.: CDPM2: A damage-plasticity approach to modelling the failure of concrete. Int. J. Solids. Struct. 50(24 ), 3805–3816 (2013). issn: 0020–7683

    Google Scholar 

  7. Pan, J., Feng, Y., Jin, F., Zhang, C.: Numerical prediction of swelling in concrete arch dams affected by alkali-aggregate reaction. Eur. J. Environ. Civil Eng. 17(4), 231–247 (2013). https://doi.org/10.1080/19648189.2013.771112

    Article  Google Scholar 

  8. Mainguy, M., Coussy, O., Eymard, R.: Modélisation des transferts hydriques isothermes en milieu poreux : application au séchage des matériaux à base de ciment. Tech. rep. 32. Paris, FRANCE: Laboratoire central des ponts et chaussées, 1999

    Google Scholar 

  9. Millington, R.J.: Gas diffusion in porous media. Science 130(3367 ) (1959). https://doi.org/10.1126/science.130.3367.100-a, pp. 100-102

  10. Mainguy, M., Coussy, O., Baroghel-Bouny, V.: Role of air pressure in drying of weakly permeable materials. J. Eng. Mech. 127(6), 582–592 (2001). https://doi.org/10.1061/(ASCE)0733-9399

  11. van Genuchten, M.T.: A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)

    Article  Google Scholar 

  12. Baroghel-Bouny, V., Mainguy, M., Lassabatere, T., Coussy, O.: Characterizationand identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials. Cem. Concr. Res. 29(8), 1225–1238 (1999)

    Article  Google Scholar 

  13. Picandet, V., Khelidj, A., Bastian, G.: Effect of axial compressive damage on gas permeability of ordinary and high-performance concrete. Cem. Concr. Res. 31(11), 1525–1532 (2001)

    Article  Google Scholar 

  14. Pijaudier-Cabot, G., Dufour, F., Choinska, M.: Permeability due to the increase of damage in concrete: from diffuse to localized damage distributions. J. Eng. Mecha. 135(9), 1022–1028 (2009). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000016

    Article  Google Scholar 

  15. Bouhjiti, D.E.-M., Ezzedine El Dandachy, M., Dufour, F., Dal Pont, S., Briffaut, M., Baroth, J., Masson, B.: New continuous strain-based description of concrete’s damage-permeability coupling. In. J. Numer. Anal. Methods Geomech. 42(14), 1671–1697 (2018). https://doi.org/10.1002/nag.2808

    Article  Google Scholar 

  16. Oliver, J.: A consistent characteristic length for smeared cracking models. Int. J. Numer. Methods Eng. 28(2), 461–474 (1989). https://doi.org/10.1002/nme.1620280214

    Article  MATH  Google Scholar 

  17. Govindjee, S., Gregory, J., Simo, J.: Anisotropic modelling and numerical simulation of brittle damage in concrete. Int. J. Numer. Methods Eng. 38(21), 3611–3633 (1995). https://doi.org/10.1002/nme.1620382105

    Article  MATH  Google Scholar 

  18. Slobbe, A., Hendriks, M., Rots, J.: Systematic assessment of directional mesh bias with periodic boundary conditions: Applied to the crack band model. Eng. Fract. Mech. 109 , 186–208 (2013). issn: 0013-7944

    Google Scholar 

  19. Morenon, P.: Modélisation des réactions de gonflement interne des bétonsavec prise en compte des couplages poro-mécaniques et chimique”. PhD thesis (2017). LMDC—Laboratoire Matériaux et Durabilité des constructions

    Google Scholar 

  20. Roth, S.-N., Léger, P., Soulaïmani, A.: Strongly coupled XFEM formulation for non-planar three-dimensional simulation of hydraulic fracturing with emphasis on concrete dams. Comput. Methods Appl. Mech. Eng. 363, 112899 (2020). https://doi.org/10.1016/j.cma.2020.112899

    Article  MathSciNet  MATH  Google Scholar 

  21. ISE.: Structural Effects of Alkali-Silica Reaction—Technical Guidance Appraisal of Existing Structures. 11 Upper Belgrave Street, London SW1X 8BH: Institution of Structural Engineers (ISE), 1992

    Google Scholar 

  22. Esposito, R., Anaç, C., Hendriks, M., Çopuro\(\ddot{{\rm g}}\)lu, O.: Influence of the alkali-silica reaction on the mechanical degradation of concrete. J. Mater. Civil Eng. 28(6), 04016007 (2016). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001486

  23. Dolen, T.P.: Materials properties model for aging concrete. Tech. rep. Dam Safety Program Report No. DSO-05-05. USBR, Colorado.: Bureau of Reclamation, 2005

    Google Scholar 

  24. Dolen, T.P.: Selecting strength input poarameters for structural analysis of aging concrete dams. In: Proceedings of the 31st Annual USSD Conference. San Diego, California, 2011

    Google Scholar 

  25. Giaccio, G., Zerbino, R., Ponce, J., Batic, O.: Mechanical behavior of concretes damaged by alkali-silica reaction. Cem. Concr. Res. 38(7), 993–1004 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon-Nicolas Roth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 RILEM

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roth, SN. (2021). Benchmark Study Results: Hydro-Québec. In: Saouma, V.E. (eds) Diagnosis & Prognosis of AAR Affected Structures. RILEM State-of-the-Art Reports, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-44014-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44014-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44013-8

  • Online ISBN: 978-3-030-44014-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics