Skip to main content

Assessing Reflex Latencies in Responses to Vibration: Evidence for the Involvement of More Than One Receptor

  • Chapter
  • First Online:
Manual of Vibration Exercise and Vibration Therapy

Abstract

This chapter describes a new method for pinpointing the latency of the vibration-induced muscular reflex. To determine the reflex latency, the vibration-altered electromyography (EMG) and acceleration data were spike triggered and averaged using the tip of the EMG response as the trigger. Averaged results belonging to several different vibration frequencies were then superimposed to achieve a ‘cumulative averaged record’. The lowest standard error of the cumulative averaged record for the acceleration data was marked to indicate the effective stimulus point on the vibration cycle. Similarly, the lowest standard error of the cumulative averaged record for the EMG data showed the start of the reflex response. The time between the effective stimulus point and the start of the reflex response on EMG data was designated as the ‘reflex latency’ of this circuit. Using this technique, we have examined the latency of whole-body vibration (WBV)-induced reflexes. We found that the WBV induced two different reflex responses depending on the vibration amplitude. While low amplitude WBV (0.1–0.4 mm) produced short latency reflex similar to muscle spindle-based T-reflex (34 ms), high amplitude vibration (1.1–2.8 mm) generated long latency reflex response (44 ms) which may have a different receptor origin than the spindles. We have also summarized the modulatory effects of vibration on spindle-based reflexes and indicated that these reflexes are reduced during and/or following vibration. It is suggested that this effect may originate from the reduction in effectiveness of the spindle synapses on motoneurons via premotoneuronal means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Halliday DM, Rosenberg JR. Time and frequency domain analysis of spike train and time series data. In: Windhorst U, Johansson H, editors. Modern techniques in neuroscience research. Berlin Heidelberg: Springer; 1999. p. 503–43.

    Chapter  Google Scholar 

  2. Karacan I, Cidem M, Cidem M, Türker KS. Whole-body vibration induces distinct reflex patterns in human soleus muscle. J Electromyogr Kinesiol. 2017;34:93–101. https://doi.org/10.1016/j.jelekin.2017.04.007.

    Article  PubMed  Google Scholar 

  3. Karacan I, Cakar H, Sebik O, Yılmaz G, Cidem M, Kara S, et al. A new method to determine reflex latency induced by high rate stimulation of the nervous system. Front Hum Neurosci. 2014;8:536. https://doi.org/10.3389/fnhum.2014.00536.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cakar HI, Cidem M, Sebik O, Yilmaz G, Karamehmetoglu SS, Kara S, et al. Whole-body vibration-induced muscular reflex: is it a stretch-induced reflex? J Phys Ther Sci. 2015;27(7):2279–84. https://doi.org/10.1589/jpts.27.2279.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yıldırım MA, Kılıç A, Küçük HC, Topkara B, Paker N, Soy D, et al. Tüm Vücut Vibrasyonu Nöromuskuler Etkileri Tonik Vibrasyon Refleksi ile Açıklanabilir mi? 27.Ulusal Fiziksel Tıp ve Rehabilitasyon Kongresi 17–21 Nisan 2019

    Google Scholar 

  6. Cochrane DJ, Loram ID, Stannard SR, Rittweger J. Changes in joint angle, muscle tendon complex length, muscle contractile tissue displacement, and modulation of EMG activity during acute whole-body vibration. Muscle Nerve. 2009;40(3):420–9.

    Article  PubMed  Google Scholar 

  7. Ritzmann R, Kramer A, Gruber M, Gollhofer A, Taube W. EMG activity during whole body vibration: motion artifacts or stretch reflexes? Eur J Appl Physiol. 2010 Sep;110(1):143–51. https://doi.org/10.1007/s00421-010-1483-x.

    Article  PubMed  Google Scholar 

  8. Cochrane DJ, Stannard SR, Firth EC, Rittweger J. Acute whole-body vibration elicits post-activation potentiation. Eur J Appl Physiol. 2010;108(2):311–9. https://doi.org/10.1007/s00421-009-1215-2.

    Article  PubMed  Google Scholar 

  9. Roll JP, Vedel JP, Ribot E. Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res. 1989;76(1):213–22.

    Article  CAS  PubMed  Google Scholar 

  10. Apple S, Ehlert K, Hysinger P, Nash C, Voight M, Sells P. The effect of whole body vibration on ankle range of motion and the H-reflex. N Am J Sports Phys Ther. 2010;5(1):33–9.

    PubMed  PubMed Central  Google Scholar 

  11. Armstrong WJ, Nestle HN, Grinnell DC, Cole LD, Van Gilder EL, Warren GS, et al. The acute effect of whole-body vibration on the Hoffmann reflex. J Strength Cond Res. 2008;22(2):471–6. https://doi.org/10.1519/JSC.0b013e3181660605.

    Article  PubMed  Google Scholar 

  12. Cakar HI, Cidem M, Kara S, Karacan I. Vibration paradox and H-reflex suppression: is H-reflex suppression results from distorting effect of vibration? J Musculoskelet Neuronal Interact. 2014;14(3):318–24.

    CAS  PubMed  Google Scholar 

  13. Fernandes IA, Kawchuk G, Bhambhani Y, Gomes PS. Does whole-body vibration acutely improve power performance via increased short latency stretch reflex response? J Sci Med Sport. 2013;16(4):360–4. https://doi.org/10.1016/j.jsams.2012.08.010.

    Article  PubMed  Google Scholar 

  14. Harwood B, Scherer J, Brown RE, Cornett KMD, Kenno KA, Jakobi JM. Neuromuscular responses of the plantar flexors to whole-body vibration. Scand J Med Sci Sports. 2017;27(12):1569–75. https://doi.org/10.1111/sms.12803.

    Article  CAS  PubMed  Google Scholar 

  15. Hopkins JT, Fredericks D, Guyon PW, Parker S, Gage M, Feland JB, et al. Whole body vibration does not potentiate the stretch reflex. Int J Sports Med. 2009;30(2):124–9. https://doi.org/10.1055/s-2008-1038885.

    Article  CAS  PubMed  Google Scholar 

  16. Hortobágyi T, Rider P, DeVita P. Effects of real and sham whole-body mechanical vibration on spinal excitability at rest and during muscle contraction. Scand J Med Sci Sports. 2014;24(6):e436–47. https://doi.org/10.1111/sms.12219.

    Article  PubMed  Google Scholar 

  17. Karacan I, Cidem M, Yilmaz G, Sebik O, Cakar HI, Türker KS. Tendon reflex is suppressed during whole-body vibration. J Electromyogr Kinesiol. 2016;30:191–5. https://doi.org/10.1016/j.jelekin.2016.07.008.

    Article  PubMed  Google Scholar 

  18. Kipp K, Johnson ST, Doeringer JR, Hoffman MA. Spinal reflex excitability and homosynaptic depression after a bout of whole-body vibration. Muscle Nerve. 2011;43(2):259–62. https://doi.org/10.1002/mus.21844.

    Article  PubMed  Google Scholar 

  19. Kramer A, Gollhofer A, Ritzmann R. Acute exposure to microgravity does not influence the H-reflex with or without whole body vibration and does not cause vibration-specific changes in muscular activity. J Electromyogr Kinesiol. 2013;23(4):872–8. https://doi.org/10.1016/j.jelekin.2013.02.010.

    Article  PubMed  Google Scholar 

  20. Rittweger J, Mutschelknauss M, Felsenberg D. Acute changes in neuromuscular excitability after exhaustive whole body vibration exercise as compared to exhaustion by squatting exercise. Clin Physiol Funct Imaging. 2003;23(2):81–6.

    Article  PubMed  Google Scholar 

  21. Ritzmann R, Gollhofer A, Kramer A. The influence of vibration type, frequency, body position and additional load on the neuromuscular activity during whole body vibration. Eur J Appl Physiol. 2013a;113(1):1–11. https://doi.org/10.1007/s00421-012-2402-0.

    Article  PubMed  Google Scholar 

  22. Roll JP, Martin B, Gauthier GM, Mussa IF. Effects of whole-body vibration on spinal reflexes in man. Aviat Space Environ Med. 1980;51(11):1227–33.

    CAS  PubMed  Google Scholar 

  23. Sayenko DG, Masani K, Alizadeh-Meghrazi M, Popovic MR, Craven BC. Acute effects of whole body vibration during passive standing on soleus H-reflex in subjects with and without spinal cord injury. Neurosci Lett. 2010;482(1):66–70. https://doi.org/10.1016/j.neulet.2010.07.009.

    Article  CAS  PubMed  Google Scholar 

  24. Calancie B, Broton JG, Klose KJ, Traad M, Difini J, Ayyar DR. Evidence that alterations in presynaptic inhibition contribute to segmental hypo- and hyperexcitability after spinal cord injury in man. Electroencephalogr Clin Neurophysiol. 1993;89(3):177–86.

    Article  CAS  PubMed  Google Scholar 

  25. Godaux E, Desmedt JE. Human masseter muscle: H- and tendon reflexes. Their paradoxical potentiation by muscle vibration. Arch Neurol. 1975;32(4):229–34.

    Article  CAS  PubMed  Google Scholar 

  26. Desmedt JE, Godaux E. Mechanism of the vibration paradox: excitatory and inhibitory effects of tendon vibration on single soleus muscle motor units in man. J Physiol. 1978;285:197–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cochrane DJ. The potential neural mechanisms of acute indirect vibration. J Sports Sci Med. 2011;10(1):19–30.

    PubMed  PubMed Central  Google Scholar 

  28. Souron R, Baudry S, Millet GY, Lapole T. Vibration-induced depression in spinal loop excitability revisited. J Physiol. 2019;597:5179–93. https://doi.org/10.1113/JP278469.

    Article  CAS  PubMed  Google Scholar 

  29. Desmedt JE, Godaux E. Vibration-induced discharge patterns of single motor units in the masseter muscle in man. J Physiol. 1975;253(2):429–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karacan I, Sarıyıldız MA, Ergin Ö, Özen A, Karamehmetoğlu SS. Bone myoregulation reflex: a possible new mechanism. Nobel Med. 2009;5(3):9–17.

    Google Scholar 

  31. Karacan I, Cidem M, Bahadir C, Rezvani A, Ozen A, Unalan HI. The effects of radius bone density on the resting myoelectrical activity of contralateral wrist flexors in subjects exposed to unilateral forearm vibration. Turkiye Klinikleri J Med Sci. 2012;32(6):1673–80. https://doi.org/10.5336/medsci.2011-27910-.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal S. Türker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karacan, I., Türker, K.S. (2020). Assessing Reflex Latencies in Responses to Vibration: Evidence for the Involvement of More Than One Receptor. In: Rittweger, J. (eds) Manual of Vibration Exercise and Vibration Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-43985-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43985-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43984-2

  • Online ISBN: 978-3-030-43985-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics