Skip to main content

Metabolic Responses to Whole-Body Vibration Exercise

  • Chapter
  • First Online:
Manual of Vibration Exercise and Vibration Therapy

Abstract

The key substrates in human energy metabolism are ATP, phosphocreatine, glucose, carbohydrates, and lipids. While phosphocreatine and glucose allow some limited generation of ATP in the absence of oxygen, the bulk of ATP generation is through the oxidative phosphorylation of carbohydrates and lipids. Accordingly, measurement of oxygen uptake (VO2) by spirometry is straightforward for the assessment of the body’s energy metabolism.

A large number of studies demonstrate that VO2 is increased during WBV and that this increase is systematically dependent on vibration amplitude and frequency. Further studies demonstrate that skeletal muscle is responsible for the increase in VO2. However, the effect is quite moderate in itself and, hence, probably irrelevant to long-term energy balance.

A small number of studies suggest that WBV shifts energy metabolism toward utilization of carbohydrates and that it may enhance excess postexercise VO2. However, more research is needed before conclusions can be drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Stryer L. Biochemie [Biochemistry]. Heidelberg: Spektrum Verlag; 1990.

    Google Scholar 

  2. Quistorff B, Secher NH, Van Lieshout JJ. Lactate fuels the human brain during exercise. FASEB J. 2008;22(10):3443–9.

    Article  CAS  PubMed  Google Scholar 

  3. Kim J, Saidel GM, Cabrera ME. Multi-scale computational model of fuel homeostasis during exercise: effect of hormonal control. Ann Biomed Eng. 2007;35(1):69–90.

    Article  PubMed  Google Scholar 

  4. Whipp BJ. The slow component of O2 uptake kinetics during heavy exercise. Med Sci Sports Exerc. 1994;26(11):1319.

    Article  CAS  PubMed  Google Scholar 

  5. Berger NJA, Rittweger J, Tolfrey K, Williams A, Jones AM. Pulmonary O2 uptake on-kinetics in sprint- and endurance-trained master athletes. Med Sci Sports Exerc. 2005;37(5 Suppl):S362.

    Google Scholar 

  6. Speakman JR, Selman C. Physical activity and resting metabolic rate. P Nutr Soc. 2003;62(3):621–34.

    Article  Google Scholar 

  7. Westerterp KR. Exercise, energy expenditure and energy balance, as measured with doubly labelled water. Proc Nutr Soc. 2018;77(1):4–10.

    Article  CAS  PubMed  Google Scholar 

  8. Ryschon TW, Fowler MD, Wysong RE, Anthony A, Balaban RS. Efficiency of human skeletal muscle in vivo: comparison of isometric, concentric, and eccentric muscle action. J Appl Physiol. 1997;83(3):867.

    Article  CAS  PubMed  Google Scholar 

  9. Zange J, Haller T, Muller K, Liphardt AM, Mester J. Energy metabolism in human calf muscle performing isometric plantar flexion superimposed by 20-Hz vibration. Eur J Appl Physiol. 2009;104(2):271–7.

    Article  Google Scholar 

  10. Rittweger J, Schiessl H, Felsenberg D. Oxygen-uptake during whole body vibration exercise: comparison with squatting as a slow voluntary movement. Eur J Appl Physiol. 2001;86:169–73.

    Article  CAS  PubMed  Google Scholar 

  11. Rittweger J, Ehrig J, Just K, Mutschelknauss M, Kirsch KA, Felsenberg D. Oxygen uptake in whole-body vibration exercise: influence of vibration frequency, amplitude, and external load. IntJ Sports Med. 2002;23(6):428–32.

    Article  CAS  Google Scholar 

  12. Garatachea N, Jimenez A, Bresciani G, Marino NA, Gonzalez-Gallego J, de Paz JA. The effects of movement velocity during squatting on energy expenditure and substrate utilization in whole-body vibration. J Strength Cond Res. 2007;21(2):594–8.

    PubMed  Google Scholar 

  13. Vissers D, Baeyens JP, Truijen S, Ides K, Vercruysse CC, Van Gaal L. The effect of whole body vibration short-term exercises on respiratory gas exchange in overweight and obese women. Phys Sportsmed. 2009;37(3):88–94.

    Article  PubMed  Google Scholar 

  14. Avelar NC, Simao AP, Tossige-Gomes R, Neves CD, Mezencio B, Szmuchrowski L, et al. Oxygen consumption and heart rate during repeated squatting exercises with or without whole-body vibration in the elderly. J Strength Cond Res. 2011;25(12):3495–500.

    Article  PubMed  Google Scholar 

  15. Yarar-Fisher C, Pascoe DD, Gladden LB, Quindry JC, Hudson J, Sefton J. Acute physiological effects of whole body vibration (WBV) on central hemodynamics, muscle oxygenation and oxygen consumption in individuals with chronic spinal cord injury. Disabil Rehabil. 2014;36(2):136–45.

    Article  PubMed  Google Scholar 

  16. Gloeckl R, Richter P, Winterkamp S, Pfeifer M, Nell C, Christle JW, et al. Cardiopulmonary response during whole-body vibration training in patients with severe COPD. ERJ Open Res. 2017;3(1) https://doi.org/10.1183/23120541.00101-2016.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fares EJ, Charriere N, Montani JP, Schutz Y, Dulloo AG, Miles-Chan JL. Energy expenditure and substrate oxidation in response to side-alternating whole body vibration across three commonly-used vibration frequencies. PLoS One. 2016;11(3):e0151552.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kang J, Porfido T, Ismaili C, Selamie S, Kuper J, Bush JA, et al. Metabolic responses to whole-body vibration: effect of frequency and amplitude. Eur J Appl Physiol. 2016;116(9):1829–39.

    Article  CAS  PubMed  Google Scholar 

  19. Serravite DH, Edwards D, Edwards ES, Gallo SE, Signorile JF. Loading and concurrent synchronous whole-body vibration interaction increases oxygen consumption during resistance exercise. J Sports Sci Med. 2013;12(3):475–80.

    PubMed  PubMed Central  Google Scholar 

  20. Da Silva ME, Fernandez JM, Castillo E, Nunez VM, Vaamonde DM, Poblador MS, et al. Influence of vibration training on energy expenditure in active men. J Strength Cond Res. 2007;21(2):470–5.

    PubMed  Google Scholar 

  21. Gojanovic B, Feihl F, Gremion G, Waeber B. Physiological response to whole-body vibration in athletes and sedentary subjects. Physiol Res/Acad Sci Bohemoslov. 2014;63(6):779–92.

    CAS  Google Scholar 

  22. Milanese C, Cavedon V, Sandri M, Tam E, Piscitelli F, Boschi F, et al. Metabolic effect of bodyweight whole-body vibration in a 20-min exercise session: a crossover study using verified vibration stimulus. PLoS One. 2018;13(1):e0192046.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rosenberger A, Beijer A, Schoenau E, Mester J, Rittweger J, Zange J. Changes in motor unit activity and respiratory oxygen uptake during 6 weeks of progressive whole-body vibration combined with progressive, high intensity resistance training. J Musculoskelet Neuronal Interact. 2019;19(2):159–68.

    PubMed  PubMed Central  Google Scholar 

  24. Cochrane DJ, Sartor F, Winwood K, Stannard SR, Narici MV, Rittweger J. A comparison of the physiologic effects of acute whole-body vibration exercise in young and older people. Arch Phys Med Rehabil. 2008;89(5):815–21.

    Article  PubMed  Google Scholar 

  25. Rittweger J, Moss AD, Colier W, Stewart C, Degens H. Muscle tissue oxygenation and VEGF in VO-matched vibration and squatting exercise. Clin Physiol Funct Imaging. 2010;30(4):269–78.

    Article  CAS  PubMed  Google Scholar 

  26. Zange J, Molitor S, Illbruck A, Muller K, Schonau E, Kohl-Bareis M, et al. In the unloaded lower leg, vibration extrudes venous blood out of the calf muscles probably by direct acceleration and without arterial vasodilation. Eur J Appl Physiol. 2014;114(5):1005–12.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Thornton MK, Potteiger JA. Effects of resistance exercise bouts of different intensities but equal work on EPOC. Med Sci Sports Exerc. 2002;34(4):715–22.

    Article  PubMed  Google Scholar 

  28. Hazell TJ, Lemon PW. Synchronous whole-body vibration increases VO(2) during and following acute exercise. Eur J Appl Physiol. 2012;112(2):413–20.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Rittweger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rittweger, J. (2020). Metabolic Responses to Whole-Body Vibration Exercise. In: Rittweger, J. (eds) Manual of Vibration Exercise and Vibration Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-43985-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43985-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43984-2

  • Online ISBN: 978-3-030-43985-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics