Skip to main content

Understanding the Brain and Exploring the Effects of Clinical Fatigue: From a Patient’s Perspective

  • Chapter
  • First Online:
Biomedical Visualisation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1262))

  • 757 Accesses

Abstract

Rheumatic and musculoskeletal diseases are a group of devastating autoimmune disorders that all share a common debilitating symptom fatigue. Fatigue is not widely understood and is often underrepresented in treatment regimes. Fatigue is the least successfully managed symptom of these conditions; however, it can often be the one of the greatest impairments.

Augmented reality (AR) enhances a person’s reality showing a hybrid environment where real and virtual objects coexist. Currently educational AR applications are saturating the application market, as they have shown great potential for increasing comprehension and understanding of complex concepts. AR expands user engagement by enhancing the learner’s enjoyment and enriching their learning environment.

This research explores the development and subsequent effect of an AR application on education around fatigue and basic neuroanatomy within the general population. The application was created using medical scan dataset, a variety of 3D modelling software and a game engine to create a functional and interactive augmented application. The application explores the effects of fatigue on a person’s daily life while also laying a foundation of basic neuroanatomy. A pilot test conducted on 14 participants (8 males, 5 females and 1 other), with ages ranged 16–64 (4 form range 16 to 24, 5 from range 25 to 34, 1 from range 35 to 44, 3 from range 45 to 54, 1 from 55 to 64), shows the application is highly usable, increases understanding of basic neuroanatomical concepts and has the potential to improve understanding of fatigue. Nonetheless, further development and testing of the application are imperative so that we can gain a better understanding of the usability of the application with wider audiences. Future developments will aim to further aid knowledge acquisition and enhance understanding of fatigue, a complex and widely misunderstood concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.gnu.org/software/pspp/

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise Bennett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zurowski, J., Poyade, M., Bennett, L. (2020). Understanding the Brain and Exploring the Effects of Clinical Fatigue: From a Patient’s Perspective. In: Rea, P. (eds) Biomedical Visualisation . Advances in Experimental Medicine and Biology, vol 1262. Springer, Cham. https://doi.org/10.1007/978-3-030-43961-3_7

Download citation

Publish with us

Policies and ethics