Skip to main content

Stem Cells in Plant Development

  • Chapter
  • First Online:
Concepts and Applications of Stem Cell Biology

Part of the book series: Learning Materials in Biosciences ((LMB))

Abstract

The aim of this chapter is to give you a basic understanding of how stem cells function in plant development. Plants and animals lead quite different lives. Plants, for one, do not often move and cannot escape adverse environmental conditions. The most important consequence of their sessile mode of life is that plant development is not restricted to embryogenesis. Instead, it continues throughout the plant’s life, as it continues to grow and produce new organs. We will briefly discuss the implications of plant immobility on their developmental strategies, and how plant stem cell activity contributes to their indeterminate growth mode. Next, we will discuss the concept of plant meristems. These are highly specialized tissues that contain the plant stem cells and control both their maintenance and the production of new organs and tissues. Two main meristems are responsible for most of the growth in plants, the shoot and root apical meristems, and will be the focus of this chapter. We begin by reviewing the organization of apical meristems. Next, we discuss their embryonic origin, and we explore in finer detail the key signalling pathways involved in both the specification and maintenance of stem cell identity and activity. We will highlight the mechanisms that underlie the coordination of cell proliferation and differentiation. Hopefully, the concepts exposed in this chapter will provide you with a base from which to further explore stem cell activity and maintenance in plants, but also with the tools to draw interesting comparisons between animal and plant stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clark SE. Organ formation at the vegetative shoot meristem. Plant Cell. 1997;9(7):1067–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Laufs P, Grandjean O, Jonak C, Kiêu K, Traas J. Cellular parameters of the shoot apical meristem in Arabidopsis. Plant Cell. 1998;10(August):1375–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, et al. Cellular organisation of the Arabidopsis thaliana root. Development. 1993;119(1):71–84.

    CAS  PubMed  Google Scholar 

  4. van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B. Short-range control of cell differentiation in the Arabidopsis root meristem. Nature. 1997;390(6657):287–9.

    PubMed  Google Scholar 

  5. Boscá S. Embryonic development in Arabidopsis thaliana: from the zygote division to the shoot meristem. Front Plant Sci. 2011;2(December):1–6.

    Google Scholar 

  6. ten Hove CA, Lu K-J, Weijers D. Building a plant: cell fate specification in the early Arabidopsis embryo. Development. 2015;142(3):420–30.

    PubMed  Google Scholar 

  7. Skoog F, Miller CO. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol England. 1957;11:118–30.

    CAS  Google Scholar 

  8. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature. 2003;426(6963):147–53.

    CAS  PubMed  Google Scholar 

  9. Mayer KFX, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell. 1998;95(6):805–15.

    CAS  PubMed  Google Scholar 

  10. Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science. 1999;19(5409):1911–4.

    Google Scholar 

  11. Brand U, Grunewald M, Hobe M, Simon R. Regulation of CLV3 expression by two Homeobox genes in Arabidopsis. Plant Physiol. 2002;129(2):565–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang Z, Tucker E, Hermann M, Laux T. A molecular framework for the embryonic initiation of shoot meristem stem cells. Dev Cell. 2017;40(3):264–277.e4.

    CAS  PubMed  Google Scholar 

  13. Breuninger H, Rikirsch E, Hermann M, Ueda M, Laux T. Differential expression of WOX genes mediates apical-basal Axis formation in the Arabidopsis embryo. Dev Cell. 2008;14(6):867–76.

    CAS  PubMed  Google Scholar 

  14. Leibfried A, To JPC, Busch W, Stehling S, Kehle A, Demar M, et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature. 2005;438(7071):1172–5.

    CAS  PubMed  Google Scholar 

  15. Barton MK, Poethig RS. Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development. 1993;119:823–31.

    Google Scholar 

  16. Endrizzi K, Moussian B, Haecker A, Levin JZ, Laux T. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J. 1996;10(6):967–79.

    CAS  PubMed  Google Scholar 

  17. Haecker A, Groß-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, et al. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development. 2004;131(3):657–68.

    CAS  PubMed  Google Scholar 

  18. Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature. 2007;446(7137):811–4.

    CAS  PubMed  Google Scholar 

  19. Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, et al. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell. 2004;119(1):119–20.

    Google Scholar 

  20. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Frimi J, et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature. 2005;433(7021):39–44.

    CAS  PubMed  Google Scholar 

  21. Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, et al. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature. 2007;449(7165):1053–7.

    CAS  PubMed  Google Scholar 

  22. Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell. 2000;101(5):555–67.

    CAS  PubMed  Google Scholar 

  23. Sabatini S, Heidstra R, Wildwater M, Scheres B. SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev. 2002;17(3):354–8.

    Google Scholar 

  24. Song SK, Hofhuis H, Lee MM, Clark SE. Key divisions in the early Arabidopsis embryo require POL and PLL1 phosphatases to establish the root stem cell organizer and vascular axis. Dev Cell. 2008;15(1):98–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Laux T, Mayer KF, Berger J, Jürgens G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development. 1996;122(1):87–96.

    CAS  PubMed  Google Scholar 

  26. Clark SE, Running MP, Meyerowitz EM. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development. 1995;121(May):2057–67.

    CAS  Google Scholar 

  27. Yadav RK, Perales M, Gruel J, Girke T, Jonsson H, Reddy GV. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev. 2011;25(19):2025–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Daum G, Medzihradszky A, Suzaki T, Lohmann JU. A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proc Natl Acad Sci. 2014;111(40):14619–24.

    CAS  PubMed  Google Scholar 

  29. Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G, Laux T. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell. 2000;100(6):635–44.

    CAS  PubMed  Google Scholar 

  30. Müller R, Borghi L, Kwiatkowska D, Laufs P, Simon R. Dynamic and compensatory responses of Arabidopsis shoot and floral meristems to CLV3 signaling. Plant Cell. 2006;18(5):1188–98.

    PubMed  PubMed Central  Google Scholar 

  31. Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science. 2000;289(5479):617–9.

    CAS  PubMed  Google Scholar 

  32. Clark SE, Williams RW, Meyerowitz EM. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell. 1997;89(4):575–85.

    CAS  PubMed  Google Scholar 

  33. Nimchuk ZL, Tarr PT, Ohno C, Qu X, Meyerowitz EM. Plant stem cell signaling involves ligand-dependent trafficking of the CLAVATA1 receptor kinase. Curr Biol. 2011;21(5):345–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Müller R, Bleckmann A, Simon R. The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. Plant Cell. 2008;20(4):934–46.

    PubMed  PubMed Central  Google Scholar 

  35. Bleckmann A, Weidtkamp-Peters S, Seidel CAM, Simon R. Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane. Plant Physiol. 2010;152(1):166–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Somssich M, Bleckmann A, Simon R. Shared and distinct functions of the pseudokinase CORYNE (CRN) in shoot and root stem cell maintenance of Arabidopsis. J Exp Bot. 2016;67(16):4901–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. DeYoung BJ, Clark SE. BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling. Genetics. 2008;180(2):895–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. DeYoung BJ, Bickle KL, Schrage KJ, Muskett P, Patel K, Clark SE. The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J. 2006;45(1):1–16.

    CAS  PubMed  Google Scholar 

  39. Kinoshita A, Betsuyaku S, Osakabe Y, Mizuno S, Nagawa S, Stahl Y, et al. RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development. 2010;137(24):4327.

    CAS  Google Scholar 

  40. Shinohara H, Matsubayashi Y. Reevaluation of the CLV3-receptor interaction in the shoot apical meristem: dissection of the CLV3 signaling pathway from a direct ligand-binding point of view. Plant J. 2015;82(2):328–36.

    CAS  PubMed  Google Scholar 

  41. Guo Y, Han L, Hymes M, Denver R, Clark SE. CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification. Plant J. 2010;63(6):889–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nimchuk ZL, Zhou Y, Tarr PT, Peterson BA, Meyerowitz EM. Plant stem cell maintenance by transcriptional cross-regulation of related receptor kinases. Development. 2015;142(6):1043–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nimchuk ZL. CLAVATA1 controls distinct signaling outputs that buffer shoot stem cell proliferation through a two-step transcriptional compensation loop. PLoS Genet. 2017;13(3):e1006681.

    PubMed  PubMed Central  Google Scholar 

  44. Song S-K, Lee MM, Clark SE. POL and PLL1 phosphatases are CLAVATA1 signaling intermediates required for Arabidopsis shoot and floral stem cells. Development. 2006;133(23):4691–8.

    CAS  PubMed  Google Scholar 

  45. Long JA, Moan EI, Medford JI, Barton MK. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature. 1996;379:66–9.

    CAS  PubMed  Google Scholar 

  46. Gallois J-L, Woodward C, Reddy GV, Sablowski R. Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development. 2002;129:3207–17.

    CAS  PubMed  Google Scholar 

  47. Lenhard M, Jürgens G, Laux T. The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development. 2002;129:3195–206.

    CAS  PubMed  Google Scholar 

  48. Stuurman J, Jäggi F, Kuhlemeier C. Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells. Genes Dev. 2002;16:2213–8.

    Google Scholar 

  49. Engstrom EM, Andersen CM, Gumulak-Smith J, Hu J, Orlova E, Sozzani R, et al. Arabidopsis homologs of the Petunia HAIRY MERISTEM gene are required for maintenance of shoot and root indeterminacy. Plant Physiol. 2011;155(2):735–50.

    CAS  PubMed  Google Scholar 

  50. Zhou Y, Liu X, Engstrom EM, Nimchuk ZL, Pruneda-Paz JL, Tarr PT, et al. Control of plant stem cell function by conserved interacting transcriptional regulators. Nature. 2015;517(7534):377–80.

    CAS  PubMed  Google Scholar 

  51. Busch W, Miotk A, Ariel FD, Zhao Z, Forner J, Daum G, et al. Transcriptional control of a plant stem cell niche. Dev Cell. 2010;18(5):849–61.

    CAS  PubMed  Google Scholar 

  52. Yadav RK, Perales M, Gruel J, Ohno C, Heisler M, Girke T, et al. Plant stem cell maintenance involves direct transcriptional repression of differentiation program. Mol Syst Biol. 2013;9:654.

    PubMed  PubMed Central  Google Scholar 

  53. Stahl Y, Wink RH, Ingram GC, Simon R. A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr Biol. 2009;19(11):909–14.

    CAS  PubMed  Google Scholar 

  54. Shimizu N, Ishida T, Yamada M, Shigenobu S, Tabata R, Kinoshita A, et al. BAM 1 and RECEPTOR-LIKE PROTEIN KINASE 2 constitute a signaling pathway and modulate CLE peptide-triggered growth inhibition in Arabidopsis root. New Phytol. 2015;208(4):1104–13.

    CAS  PubMed  Google Scholar 

  55. Zhang Y, Jiao Y, Liu Z, Zhu YX. ROW1 maintains quiescent centre identity by confining WOX5 expression to specific cells. Nat Commun. 2015;6:6003.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Han P, Li Q, Zhu Y-X. Mutation of Arabidopsis BARD1 causes meristem defects by failing to confine WUSCHEL expression to the organizing center. Plant Cell. 2008;20(6):1482–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mähönen AP, Ten Tusscher K, Siligato R, Smetana O, Díaz-Triviño S, Salojärvi J, et al. PLETHORA gradient formation mechanism separates auxin responses. Nature. 2014;515(7525):125–9.

    PubMed  PubMed Central  Google Scholar 

  58. Ding Z, Friml J. Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc Natl Acad Sci. 2010;107(26):12046–51.

    CAS  PubMed  Google Scholar 

  59. Nakajima K, Sena G, Nawy T, Benfey PN. Intercellular movement of the putative transcription factor SHR in root patterning. Nature. 2001;413(6853):307–11.

    CAS  PubMed  Google Scholar 

  60. Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, Gallagher KL, et al. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science. 2007;316(5823):421–5.

    CAS  PubMed  Google Scholar 

  61. Sozzani R, Cui H, Moreno-Risueno MA, Busch W, Van Norman JM, Vernoux T, et al. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature. 2010;466(7302):128–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Welch D, Hassan H, Blilou I, Immink R, Heidstra R, Scheres B. Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action. Genes Dev. 2007;21(17):2196–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci. 2009;106(38):16529–34.

    CAS  PubMed  Google Scholar 

  64. Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, Schultheiss SJ, et al. Hormonal control of the shoot stem-cell niche. Nature. 2010;465(7301):1089–92.

    CAS  PubMed  Google Scholar 

  65. Chickarmane VS, Gordon SP, Tarr PT, Heisler MG, Meyerowitz EM. Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem. Proc Natl Acad Sci. 2012;109(10):4002–7.

    CAS  PubMed  Google Scholar 

  66. Reinhardt D, Mandel T, Kuhlemeier C. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell. 2000;12(4):507–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Luo L, Zeng J, Wu H, Tian Z, Zhao Z. A molecular framework for auxin-controlled homeostasis of shoot stem cells in Arabidopsis. Mol Plant. 2018;11(7):899–913.

    CAS  PubMed  Google Scholar 

  68. Kirch T, Simon R, Grunewald M, Werr W. Dornröschen/enhancer of shoot regeneration. Plant Cell. 2003;15(March):694–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, et al. A genetic framework for the control of cell division and differentiation in the root meristem. Science. 2008;322(5906):1380–4.

    Google Scholar 

  70. Grieneisen VA, Xu J, Marée AFM, Hogeweg P, Scheres B. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature. 2007;449(7165):1008–13.

    CAS  PubMed  Google Scholar 

  71. Di Mambro R, De Ruvo M, Pacifici E, Salvi E, Sozzani R, Benfey PN, et al. Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root. Proc Natl Acad Sci. 2017;114(36):E7641–9.

    PubMed  Google Scholar 

  72. Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, et al. Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol. 2007;17(8):678–82.

    Google Scholar 

  73. Zhang W, Swarup R, Bennett M, Schaller GE, Kieber JJ. Cytokinin induces cell division in the quiescent center of the arabidopsis root apical meristem. Curr Biol. 2013;23(20):1979–89.

    CAS  PubMed  Google Scholar 

  74. Moubayidin L, DiMambro R, Sozzani R, Pacifici E, Salvi E, Terpstra I, et al. Spatial coordination between stem cell activity and cell differentiation in the root meristem. Dev Cell. 2013;26(4):405–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ubeda-Tomás S, Federici F, Casimiro I, Beemster GTS, Bhalerao R, Swarup R, et al. Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Curr Biol. 2009;19(14):1194–9.

    PubMed  Google Scholar 

  76. Gonzalez-Garcia M-P, Vilarrasa-Blasi J, Zhiponova M, Divol F, Mora-Garcia S, Russinova E, et al. Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development. 2011;138(5):849–59.

    CAS  PubMed  Google Scholar 

  77. Hobe M, Müller R, Grünewald M, Brand U, Simon R. Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis. Dev Genes Evol. 2003;213(8):371–81.

    CAS  PubMed  Google Scholar 

  78. Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, et al. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci. 2008;105(39):15208–13.

    CAS  PubMed  Google Scholar 

  79. Hirakawa Y, Kondo Y, Fukuda H. TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 Homeobox gene in Arabidopsis. Plant Cell. 2010;22(8):2618–29.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This summary of literature on plant meristems was compiled with the best of intentions in 2019. Apologies to all colleagues whose work was not included due to time and space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Gonçalves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonçalves, B. (2020). Stem Cells in Plant Development. In: Rodrigues, G., Roelen, B.A.J. (eds) Concepts and Applications of Stem Cell Biology. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-43939-2_7

Download citation

Publish with us

Policies and ethics