Advertisement

DARPA Subterranean Challenge: Multi-robotic Exploration of Underground Environments

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11995)

Abstract

The Subterranean Challenge (SubT) is a contest organised by the Defense Advanced Research Projects Agency (DARPA). The contest reflects the requirement of increasing safety and efficiency of underground search-and-rescue missions. In the SubT challenge, teams of mobile robots have to detect, localise and report positions of specific objects in an underground environment. This paper provides a description of the multi-robot heterogeneous exploration system of our CTU-CRAS team, which scored third place in the Tunnel Circuit round, surpassing the performance of all other non-DARPA-funded competitors. In addition to the description of the platforms, algorithms and strategies used, we also discuss the lessons-learned by participating at such contest.

References

  1. 1.
    Rolling, walking, flying, and floating, SubT challenge teams traverse the tunnel circuit, August 2019. https://www.darpa.mil/news-events/2019-08-22
  2. 2.
    Atkeson, C.G., et al.: Achieving reliable humanoid robot operations in the DARPA robotics challenge: team WPI-CMU’s approach. In: Spenko, M., Buerger, S., Iagnemma, K. (eds.) The DARPA Robotics Challenge Finals: Humanoid Robots To The Rescue. STAR, vol. 121, pp. 271–307. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-74666-1_8CrossRefGoogle Scholar
  3. 3.
    Bayer, J., Faigl, J.: On autonomous spatial exploration with small hexapod walking robot using tracking camera intel RealSense T265. In: European Conference on Mobile Robots (ECMR) (2019)Google Scholar
  4. 4.
    Burgard, W., Moors, M., Fox, D., Simmons, R., Thrun, S.: Collaborative multi-robot exploration. In: ICRA, pp. 476–481 (2000)Google Scholar
  5. 5.
    Čížek, P., Faigl, J.: Dynamic building of wireless communication infrastructure in underground environments. In: Modelling and Simulation for Intelligent Systems (MESAS) (2019)Google Scholar
  6. 6.
    DARPA: Competition rules tunnel circuit, July 2019Google Scholar
  7. 7.
    Dillmann, R.: Ka 1.10 benchmarks for robotics research. European Robotics Network (EURON), IST-2000-26048 (2004)Google Scholar
  8. 8.
    Faigl, J., et al.: On localization and mapping with RGB-D sensor and hexapod walking robot in rough terrains. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 002273–002278. IEEE (2016)Google Scholar
  9. 9.
    Huber, D.F., Vandapel, N.: Automatic three-dimensional underground mine mapping. Int. J. Rob. Res. 25(1), 7–17 (2006)CrossRefGoogle Scholar
  10. 10.
    Iša, J., Dlouhý, M.: Robotour-robotika.cz outdoor delivery challenge. In: Proceedings of the 1st Slovak-Austrian International Conference on Robotics in Education, Bratislava, Slovakia. Citeseer (2010)Google Scholar
  11. 11.
    Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable slam system with full 3D motion estimation. In: 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, pp. 155–160. IEEE (2011)Google Scholar
  12. 12.
    Kruijff-Korbayová, I., et al.: TRADR project: long-term human-robot teaming for robot assisted disaster response. KI-Künstliche Intelligenz 29(2), 193–201 (2015)CrossRefGoogle Scholar
  13. 13.
    Lier, F., et al.: Towards automated system and experiment reproduction in robotics. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3298–3305. IEEE (2016)Google Scholar
  14. 14.
    Losch, R., Grehl, S., Donner, M., Buhl, C., Jung, B.: Design of an autonomous robot for mapping, navigation, and manipulation in underground mines. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, October 2018Google Scholar
  15. 15.
    Maity, A., Majumder, S., Ray, D.N.: Amphibian subterranean robot for mine exploration. In: 2013 International Conference on Robotics, Biomimetics, Intelligent Computational Systems. IEEE (2013)Google Scholar
  16. 16.
    Morris, A., et al.: Recent developments in subterranean robotics. J. Field Rob. 23(1), 35–57 (2006)CrossRefGoogle Scholar
  17. 17.
    Mur-Artal, R., Montiel, J.M.M., Tardós, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Rob. 31(5), 1147–1163 (2015).  https://doi.org/10.1109/TRO.2015.2463671CrossRefGoogle Scholar
  18. 18.
    Murphy, R.R., Kravitz, J., Stover, S.L., Shoureshi, R.: Mobile robots in mine rescue and recovery. IEEE Rob. Autom. Mag. 16(2), 91–103 (2009)CrossRefGoogle Scholar
  19. 19.
    Neumann, T., Ferrein, A., Kallweit, S., Scholl, I.: Towards a mobile mapping robot for underground mines. In: Proceedings of the 2014 PRASA, RobMech and AfLaT International Joint Symposium, Cape Town, South Africa, pp. 27–28 (2014)Google Scholar
  20. 20.
    Obdrzalek, D.: Eurobot junior and starter-a comparison of two approaches for robotic contest organization. In: Robotics in Education, Bratislava (2010)Google Scholar
  21. 21.
    Oßwald, S., Bennewitz, M., Burgard, W., Stachniss, C.: Speeding-up robot exploration by exploiting background information. IEEE Rob. Autom. Lett. 1(2), 716–723 (2016)CrossRefGoogle Scholar
  22. 22.
    Pecka, M., Šalanský, V., Zimmermann, K., Svoboda, T.: Autonomous flipper control with safety constraints. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2889–2894, October 2016.  https://doi.org/10.1109/IROS.2016.7759447
  23. 23.
    Pecka, M., Zimmermann, K., Petrlík, M., Svoboda, T.: Data-driven policy transfer with imprecise perception simulation. IEEE Rob. Autom. Lett. 3(4), 3916–3921 (2018).  https://doi.org/10.1109/LRA.2018.2857927CrossRefGoogle Scholar
  24. 24.
    Pomerleau, F., Colas, F., Siegwart, R., Magnenat, S.: Comparing ICP variants on real-world data sets. Auton. Rob. 34(3), 133–148 (2013).  https://doi.org/10.1007/s10514-013-9327-2CrossRefGoogle Scholar
  25. 25.
    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)Google Scholar
  26. 26.
    Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
  27. 27.
    Rusu, S.R., Hayes, M.J.D., Marshall, J.A.: Localization in large-scale underground environments with RFID. In: 2011 24th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, May 2011Google Scholar
  28. 28.
    Santos, J.M., Krajník, T., Fentanes, J.P., Duckett, T.: Lifelong information-driven exploration to complete and refine 4-D spatio-temporal maps. IEEE Rob. Autom. Lett. 1(2), 684–691 (2016).  https://doi.org/10.1109/LRA.2016.2516594CrossRefGoogle Scholar
  29. 29.
    Santos, J.M., Portugal, D., Rocha, R.P.: An evaluation of 2D SLAM techniques available in robot operating system. In: 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1–6. IEEE (2013)Google Scholar
  30. 30.
    Saska, M., Krajník, T., Přeučil, L.: Cooperative \(\mu \)UAV-UGV autonomous indoor surveillance. In: International Multi-Conference on Systems, Signals & Devices, pp. 1–6. IEEE (2012)Google Scholar
  31. 31.
    Schneider, S., et al.: The RoCKIn@home challenge. In: 41st International Symposium on Robotics, ISR/Robotik 2014, pp. 1–7. VDE (2014)Google Scholar
  32. 32.
    Spurný, V., et al.: Cooperative autonomous search, grasping, and delivering in a treasure hunt scenario by a team of unmanned aerial vehicles. J. Field Rob. 36(1), 125–148 (2018)CrossRefGoogle Scholar
  33. 33.
    Thrun, S., et al.: A system for volumetric robotic mapping of abandoned mines. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2003)Google Scholar
  34. 34.
    Wang, W., Dong, W., Su, Y., Wu, D., Du, Z.: Development of search-and-rescue robots for underground coal mine applications. J. Field Rob. 31(3), 386–407 (2014)CrossRefGoogle Scholar
  35. 35.
    Wong, C.C., Wang, W.W., Lee, Y.L.: Soccer robot design for FIRA MiroSot league. In: IEEE International Conference on Mechatronics, ICM 2005, pp. 457–460. IEEE (2005)Google Scholar
  36. 36.
    Yamauchi, B.: A frontier-based approach for autonomous exploration. In: CIRA, vol. 97, p. 146 (1997)Google Scholar
  37. 37.
    Zhao, J., Liu, G., Liu, Y., Zhu, Y.: Research on the application of a marsupial robot for coal mine rescue. In: Xiong, C., Liu, H., Huang, Y., Xiong, Y. (eds.) ICIRA 2008. LNCS (LNAI), vol. 5315, pp. 1127–1136. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88518-4_120CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringCzech Technical UniversityPragueCzechia
  2. 2.Université LavalQuebec CityCanada

Personalised recommendations