Skip to main content

Switch Realization

  • Chapter
  • First Online:
Fundamentals of Power Electronics

Abstract

We have seen in previous chapters that the switching elements of the buck, boost, and several other dc–dc converters can be implemented using a transistor and diode. One might wonder why this is so, and how to realize semiconductor switches in general. These are worthwhile questions to ask, and switch implementation can depend on the power processing function being performed. The switches of inverters and cycloconverters require more complicated implementations than those of dc–dc converters. Also, the way in which a semiconductor switch is implemented can alter the behavior of a converter in ways not predicted by the ideal-switch analysis of the previous chapters—an example is the discontinuous conduction mode treated in the next chapter. The realization of switches using transistors and diodes is the subject of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Ćuk, Basics of switched-mode power conversion: Topologies, magnetics, and control, in Advances in Switched-Mode Power Conversion, vol. 2, pp. 279–310, 1981

    Google Scholar 

  2. N. Mohan, T. Undeland, W. Robbins, Power Electronics: Converters, Applications, and Design, 3rd edn. (Wiley, New York, 2002)

    Google Scholar 

  3. M. Rashid, Power Electronics: Circuits, Devices, and Applications, 2nd edn. (Prentice Hall, Englewood, NJ, 1993)

    Google Scholar 

  4. R.D. Middlebrook, S. Ćuk, W. Behen, A new battery charger/discharger converter, in IEEE Power Electronics Specialists Conference, pp. 251–255, June 1978

    Google Scholar 

  5. S. Ćuk, R. Erickson, A conceptually new high-frequency switched-mode amplifier technique eliminates current ripple, in Fifth National Solid-State Power Conversion Conference (Powercon 5), pp. G3.1-G3.22, May 1978

    Google Scholar 

  6. H. Matsuo, F. Kurokawa, New solar cell power supply system using a boost type bidirectional dc-dc converter, in IEEE Power Electronics Specialists Conference, pp. 14–19, June 1982

    Google Scholar 

  7. M. Venturini, A new sine-wave-in sine-wave-out conversion technique eliminates reactive elements, in Proceedings Seventh International Solid-State Power Conversion Conference (Powercon 7), pp. E3.1–E3.13, 1980

    Google Scholar 

  8. K.D.T. Ngo, S. Ćuk, R.D. Middlebrook, A new flyback dc-to-three-phase converter with sinusoidal outputs, in IEEE Power Electronics Specialists Conference (PESC 1983), pp. 377–388, 1983

    Google Scholar 

  9. L. Gyugi, B. Pelly, Static Power Frequency Changers: Theory, Performance, and Applications (Wiley-Interscience, New York, 1976)

    Google Scholar 

  10. R.S. Kagan, M. Chi, Improving power supply efficiency with MOSFET synchronous rectifiers, in Proceedings Ninth International Solid-State Power Conversion Conference (Powercon 9), pp. D4.1–D4.9, July 1982

    Google Scholar 

  11. R. Blanchard, P.E. Thibodeau, The design of a high efficiency, low voltage power supply using MOSFET synchronous rectification and current mode control, in IEEE Power Electronics Specialists Conference, pp. 355–361, June 1985

    Google Scholar 

  12. M. Schlecht, L. Casey, A comparison of the square wave and quasi-resonant topologies, in IEEE Applied Power Electronics Conference, pp. 124–134, March 1987

    Google Scholar 

  13. C. Hu, A parametric study of power MOSFETs, in IEEE Power Electronics Specialists Conference (PESC 1979), 1979

    Google Scholar 

  14. B.J. Baliga, Modern Power Devices (Wiley, New York, 1987)

    Google Scholar 

  15. C.L. Ma, P.O. Lauritzen, A simple power diode model with forward and reverse recovery, in IEEE Power Electronics Specialists Conference, pp. 411–415, June 1991

    Google Scholar 

  16. P. Gray, D. Dewitt, A. Boothroyd, J. Gibbons, Physical Electronics and Circuit Models of Transistors, vol. 2. (Wiley, New York, 1964)

    Google Scholar 

  17. E. Oxner, Power FETs and Their Applications (Prentice-Hall, Englewood, NJ, 1982)

    Google Scholar 

  18. B.J. Baliga, M.S. Adler, R.P. Love, P.V. Gray, N.D. Zammer, The insulated gate transistor—a new three terminal MOS-controlled bipolar power device. IEEE Trans. Electron Dev. 31, 821–828 (1984)

    Article  Google Scholar 

  19. V. Temple, MOS-controlled thyristors—a new class of power devices. IEEE Trans. Electron Dev. 33, 1609–1618 (1986)

    Article  Google Scholar 

  20. S. Sul, F. Profumo, G. Cho, T. Lipo, MCTs and IGBTs: a comparison of performance in power electronics circuits, in IEEE Power Electronics Specialists Conference, pp. 163–169, June 1989

    Google Scholar 

  21. V. Temple, S. Arthur, D. Watrous, R.D. Doncker, H. Metha, Megawatt MOS controlled thyristor for high voltage power circuits, in IEEE Power Electronics Specialists Conference, pp. 1018–1025, June 1992

    Google Scholar 

  22. B.J. Baliga, Advanced Power MOSFET Concepts (Springer Science+Business, 2010)

    Google Scholar 

  23. B.J. Baliga, Fundamentals of Power Semiconductor Devices (Springer Science+Business, 2008)

    Google Scholar 

  24. A. Lidow, J. Strydom, M.D. Rooij, D. Reusch, GaN Transistors for Efficient Power Conversion, 2nd edn. (Wiley, September 2014)

    Book  Google Scholar 

  25. A. Hefner, S. Ryu, B. Hull, D. Berning, C. Hood, J. Ortiz-Rodriguez, A. Rivera-Lopez, T. Duong, A. Akuffo, M. Hernandez-Mora, Recent advances in high-voltage, high-frequency silicon-carbide power devices, in Record of the 2006 IEEE Industry Applications Conference, pp. 330–337, 2006

    Google Scholar 

  26. J. Palmour, Silicon carbide power device development for industrial markets, in 2014 IEEE International Electron Devices Meeting, pp. 1.1.1–1.1.8, 2014

    Google Scholar 

  27. T. Fujihira, Theory of semiconductor superjunction devices. Jpn. J. Appl. Phys 36, 6254–6262 (1997)

    Article  Google Scholar 

  28. A. Elasser, P. Chow, Silicon carbide benefits and advantages for power electronics circuits and systems. Proc. IEEE 90, 969–986 (2002)

    Article  Google Scholar 

  29. J. Wang, X. Zhou, J. Li, T. Zhao, A. Huang, R. Callanan, F. Husna, A. Agarwal, 10-kV SiC MOSFET-based boost converter. IEEE Trans. Ind. Appl. 45, 2056–2063 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erickson, R.W., Maksimović, D. (2020). Switch Realization. In: Fundamentals of Power Electronics. Springer, Cham. https://doi.org/10.1007/978-3-030-43881-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43881-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43879-1

  • Online ISBN: 978-3-030-43881-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics