Skip to main content

Electronic Properties of Organic Semiconductors

  • Chapter
  • First Online:
Epitaxy of Semiconductors

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

The highest occupied und lowest unoccupied molecular orbitals (HOMO and LUMO) form bands in organic semiconductors corresponding to valence and conduction bands of their inorganic counterparts. Organic crystals have comparatively narrow bands and large bandgaps, and they feature strong anisotropies. The Gaussian density of states of HOMO and LUMO supplemented by defect states produces a substantial tailing of the bands into the bandgap. The strong structural and electronic relaxation occurring when a molecule is charged leads to strongly bound Frenkel excitons and to a pronounced polaron character of mobile carriers. The small polaron radius and the high density of defects lead to a prevailing, thermally activated hopping conductance with a relatively low carrier mobility. Band conductance with an increased mobility at low temperature may be found at reduced scattering rates. Molecules at the interfaces between two organic semiconductors have often weak interaction, yielding a band alignment largely described by matching the vacuum levels. Molecular interaction at interfaces to metals is generally strong, creating surface dipoles and an often observed pinning of the Fermi level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.S. Hung, C.H. Chen, Recent progress of molecular organic electroluminescent materials and devices. Mater. Sci. Eng. 39, 143 (2002)

    Google Scholar 

  2. M.C. Gather, A. Köhnen, K. Meerholz, White organic light-emitting diodes. Adv. Mater. 23, 233 (2011)

    Google Scholar 

  3. A.C. Arias, J.D. MacKenzie, I. McCulloch, J. Rivnay, A. Salleo, Materials and applications for large area electronics: solution-based approaches. Chem. Rev. 110, 3 (2010)

    Google Scholar 

  4. P. Peumans, A. Yakimov, S.R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93, 3693 (2003)

    ADS  Google Scholar 

  5. A.W. Hains, Z. Liang, M.A. Woodhouse, B.A. Gregg, Molecular semiconductors in organic photovoltaic cells. Chem. Rev. 110, 6689 (2010)

    Google Scholar 

  6. N. Karl, Organic Semiconductors, in Festkörperprobleme/Advances in Solid State Physics, vol. 14, ed. by H.J. Queisser (Vieweg, Braunschweig, 1974), pp. 261–290

    Google Scholar 

  7. Y.C. Cheng, R.J. Silbey, D.A. da Silva Filho, J.P. Calbert, J. Cornil, J.L. Brédas, Three-dimensional band structure and bandlike mobility in oligoacene single crystals: a theoretical investigation. J. Chem. Phys. 118, 3764 (2003)

    Google Scholar 

  8. S.-I. Machida, Y. Nakayama, S. Duhm, Q. Xin, A. Funakoshi, N. Ogawa, S. Kera, N. Ueno, H. Ishii, Highest-occupied-molecular-orbital band dispersion of rubrene single crystals as observed by angle-resolved ultraviolet photoelectron spectroscopy. Phys. Rev. Lett. 104, 156401 (2010)

    ADS  Google Scholar 

  9. S. Yanagisawa, Y. Morikawa, A. Schindlmayr, HOMO band dispersion of crystalline rubrene: effects of self-energy corrections within the GW approximation. Phys. Rev. B 88, 115438 (2013)

    ADS  Google Scholar 

  10. J.L. Brédas, J.P. Calbert, D.A. da Silva Filho, J. Cornil, Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc. Natl. Acad. Sci. USA 99, 5804 (2002)

    Google Scholar 

  11. T. Holstein, Studies of polaron motion part II: the “small” polaron. Ann Phys. (N. Y.) 8, 343 (1959)

    Google Scholar 

  12. K. Hannewald, V.M. Stojanović, J.M.T. Schellekens, P.A. Bobbert, G. Kresse, J. Hafner, The theory of polaron bandwidth narrowing in molecular crystals. Phys. Rev. B 69, 075211 (2004)

    ADS  Google Scholar 

  13. Y. Yang, Y. Yang, F. Wua, Z. Wei, First-principles electronic structure of copper phthalocyanine (CuPc). Solid State Commun. 148, 559 (2008)

    ADS  Google Scholar 

  14. I.G. Hill, A. Kahn, Z.G. Soos, R.A. Pascal Jr., Charge-separation energy in films of π-conjugated organic molecules. Chem. Phys. Lett. 327, 181 (2000)

    ADS  Google Scholar 

  15. P.K. Nayak, Exciton binding energy in small organic conjugated molecule. Synth. Met. 174, 42 (2013)

    Google Scholar 

  16. P.I. Djurovich, E.I. Mayo, S.R. Forrest, M.E. Thompson, Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors. Org. Electron. 10, 515 (2009)

    Google Scholar 

  17. J. Singh, The dynamics of excitons, in Solid State Physics, vol. 38, ed. by H. Ehrenreich, D. Turnbull (Academic Press, Orlando, 1984), pp. 295–370

    Google Scholar 

  18. K.W. Böer, U.W. Pohl, Excitons, in Semiconductor Physics (Springer, Cham, 2018)

    Google Scholar 

  19. J.I. Frenkel, On the transformation of light into heat in solids II. Phys. Rev. 37, 1276 (1931)

    ADS  MATH  Google Scholar 

  20. G. Klein, R. Voltz, M. Schott, Singlet exciton fission in anthracene and tetracene at 77 degrees K. Chem. Phys. Lett. 19, 391 (1973)

    ADS  Google Scholar 

  21. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234 (2012)

    ADS  Google Scholar 

  22. M. Pope, C.E. Swenberg, Electronic Processes in Organic Crystals (Oxford University Press, Oxford, UK, 1982)

    Google Scholar 

  23. J. Shinar (ed.), Organic Light-Emitting Devices: A Survey (Springer, New York, 2004)

    Google Scholar 

  24. K.T. Kamtekar, A.P. Monkman, M.R. Bryce, Recent advances in white organic light-emitting materials and devices (WOLEDs). Adv. Mater. 22, 572 (2010)

    Google Scholar 

  25. S. Reineke, M.A. Baldo, Room temperature triplet state spectroscopy of organic semiconductors. Sci. Rep. 4, 3797 (2014)

    ADS  Google Scholar 

  26. R.P. Feynman, Slow electrons in a polar crystal. Phys. Rev. 97, 660 (1955)

    ADS  MATH  Google Scholar 

  27. J. Appel, Polarons, in Solid State Physics, vol. 21, ed. by F. Seitz, D. Turnbull, H. Ehrenreich (Academic Press, New York, 1968), pp. 193–391

    Google Scholar 

  28. R.A. Marcus, Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 65, 599 (1993)

    ADS  Google Scholar 

  29. A. Troisi, Charge transport in high mobility molecular semiconductors: classical models and new theories. Chem. Soc. Rev. 40, 2347 (2011)

    Google Scholar 

  30. C.L. Braun, Organic semiconductors, in Handbook on Semiconductors, Vol. 3, Materials Properties and Preparation, ed. by T.S. Moss, S.P. Keller (North Holland Publ, Amsterdam, 1980), pp. 857–873

    Google Scholar 

  31. H.J. Keller (ed.), Chemistry and Physics in One-Dimensional Metals (Plenum Press, New York, 1977)

    Google Scholar 

  32. A.N. Bloch, T.F. Carruthers, T.O. Poehler, D.O. Cowan, The organic metallic state: some physical aspects and chemical trends, in Chemistry and Physics in One-Dimensional Metals, ed. by H.J. Keller (Plenum Press, New York, 1977), pp. 47–85

    Google Scholar 

  33. W. Warta, R. Stehle, N. Karl, Ultrapure, high mobility organic photoconductors. Appl. Phys. A 36, 163 (1985)

    ADS  Google Scholar 

  34. N. Karl, Charge-carrier mobility in organic crystals, in Organic Electronic Materials: Conjugated Polymers and Low Molecular Weight Organic Solids, ed. by R. Farchioni, G. Grosso (Springer, Berlin, 2001), pp. 283–326

    Google Scholar 

  35. L.B. Schein, Temperature independent drift mobility along the molecular direction of As2S3. Phys. Rev. B 15, 1024 (1977)

    ADS  Google Scholar 

  36. N. Karl, Organic Semiconductors. Landoldt-Börnstein (Springer, Heidelberg, 1984)

    Google Scholar 

  37. H. Bässler, A. Köhler, Charge transport in organic semiconductors. Top. Curr. Chem. 312, 1 (2012)

    Google Scholar 

  38. H. Bässler, Charge transport in disordered organic photoconductors. Phys. Stat. Solidi B 175, 15 (1993)

    ADS  Google Scholar 

  39. R. Noriega, A. Salleo, Charge transport theories in organic semiconductors, in Organic Electronics II, ed. by H. Klauk, (Wiley-VCH, Weinheim, 2012), pp. 67–104

    Google Scholar 

  40. V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, J.L. Bredas, Charge transport in organic semiconductors. Chem. Rev. 107, 926 (2007)

    Google Scholar 

  41. P.W.M. Blom, M.J.M. de Jong, M.G. van Munster, Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene). Phys. Rev. B 55, R656 (1997)

    ADS  Google Scholar 

  42. P.W.M. Blom, M.C.J.M. Vissenberg, Charge transport in poly(p-phenylene vinylene) light-emitting diodes. Mater. Sci. Eng. 27, 53 (2000)

    Google Scholar 

  43. Q. Shi, Y. Hou, J. Lu, H. Jin, Yunbai Li, Yan Li, X. Sun, J. Liu, Enhancement of carrier mobility in MEH-PPV film prepared under presence of electric field. Chem. Phys. Lett. 425, 353 (2006)

    Google Scholar 

  44. W.L. Kalb, S. Haas, C. Krellner, T. Mathis, B. Batlogg, Trap density of states in small-molecule organic semiconductors: a quantitative comparison of thin-film transistors with single crystals. Phys. Rev. B 81, 155315 (2010)

    ADS  Google Scholar 

  45. J. Rivnay, R. Noriega, J.E. Northrup, R.J. Kline, M.F. Toney, A. Salleo, Structural origin of gap states in semicrystalline polymers and the implications for charge transport. Phys Rev B 83, 121306 (2011)

    ADS  Google Scholar 

  46. W.R. Salaneck, K. Seki, A. Kahn, J.-J. Pireaux (eds.), Conjugated Polymer and Molecular Interfaces (Marcel Dekker Inc., New York, 2002)

    Google Scholar 

  47. N. Koch, Electronic structure of interfaces with conjugated organic materials. Phys. Stat. Solidi RRL 6, 277 (2012)

    Google Scholar 

  48. K. Akaike, Advanced understanding on electronic structure of molecular semiconductors and their interfaces. Jpn. J. Appl. Phys. 57, 03EA03 (2018)

    Google Scholar 

  49. I.G. Hill, D. Milliron, J. Schwartz, A. Kahn, Organic semiconductor interfaces: electronic structure and transport properties. Appl. Surf. Sci. 166, 354 (2000)

    ADS  Google Scholar 

  50. H. Vázquez, W. Gao, F. Flores, A. Kahn, Energy level alignment at organic heterojunctions: role of the charge neutrality level. Phys. Rev. B 71, 041306 (2005)

    ADS  Google Scholar 

  51. G. Heimel, I. Salzmann, S. Duhm, N. Koch, Design of organic semiconductors from molecular electrostatics. Chem. Mater. 23, 359 (2011)

    Google Scholar 

  52. W. Chen, D.-C. Qi, H. Huang, X. Gao, A.T.S. Wee, Organic-organic heterojunction interfaces: effect of molecular orientation. Adv. Funct. Mater. 21, 410 (2011)

    Google Scholar 

  53. N. Koch, S. Duhm, J.P. Rabe, A. Vollmer, R.L. Johnson, Optimized hole injection with strong electron acceptors at organic-metal interfaces. Phys. Rev. Lett. 95, 237601 (2005)

    ADS  Google Scholar 

  54. H. Vázquez, F. Flores, R. Oszwaldowski, J. Ortega, R. Pérez, A. Kahn, Barrier formation at metal-organic interfaces: dipole formation and the charge neutrality level. Appl. Surf. Sci. 234, 107 (2004)

    ADS  Google Scholar 

  55. J. Hwang, A. Wan, A. Kahn, Energetics of metal-organic interfaces: new experiments and assessment of the field. Mater. Sci. Eng. R 64, 1 (2009)

    Google Scholar 

  56. J.-P. Yang, F. Bussolotti, S. Kera, N. Ueno, Origin and role of gap states in organic semi-conductor studied by UPS: as the nature of organic molecular crystals. J. Phys. D: Appl. Phys. 50, 423002 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo W. Pohl .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pohl, U.W. (2020). Electronic Properties of Organic Semiconductors. In: Epitaxy of Semiconductors. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-43869-2_5

Download citation

Publish with us

Policies and ethics