Skip to main content

Structural Properties of Heterostructures

  • Chapter
  • First Online:
Epitaxy of Semiconductors

Part of the book series: Graduate Texts in Physics ((GTP))

  • 1806 Accesses

Abstract

Structural properties of epitaxial layers are pointed out in this chapter with some emphasis on zincblende and wurtzite crystals. After a brief review on perfect, polytype, and mixed bulk crystals we focus on elastic properties of pseudomorphic strained-layer structures. Then the concept of critical layer thickness is introduced, and dislocations relieving the strain in epitaxial layers are presented. X-ray diffraction—the standard tool for structural characterization—is outlined at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.-Y. Yeh, Z.W. Lu, S. Froyen, A. Zunger, Zinc-blende-wurtzite polytypism in semiconductors. Phys. Rev. B 46, 10086 (1992)

    ADS  Google Scholar 

  2. O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85, 3222 (1999)

    ADS  Google Scholar 

  3. H. Ibach, Thermal expansion of silicon and zinc oxide. Phys. Status Solidi 31, 625 (1969)

    Google Scholar 

  4. K. Haruna, H. Maeta, K. Ohashi, T. Koike, The negative thermal expansion coefficient of GaP crystal at low temperatures. J. Phys. C 19, 5149 (1986)

    ADS  Google Scholar 

  5. J.St. John, A.N. Bloch, Quantum-defect electronegativity scale for nontransition elements. Phys. Rev. Lett. 33, 1095 (1974)

    Google Scholar 

  6. J.R. Chelikowsky, J.C. Phillips, Quantum-defect theory of heats of formation and structural transition energies of liquid and solid simple metal alloys and compounds. Phys. Rev. B 17, 2453 (1978)

    ADS  Google Scholar 

  7. S.B. Zhang, M.L. Marvin, Determination of \(AB\) crystal structures from atomic properties. Phys. Rev. B 39, 1077 (1989)

    ADS  Google Scholar 

  8. P. Villars, K. Mathis, F. Hulliger, Environment classification and structural stability maps, in The Structure of Binary Compounds, ed. by F.R. de Boer, D.G. Pettifor (North-Holland, Amsterdam, 1989)

    Google Scholar 

  9. O. Madelung (ed.), Semiconductors-Basic Data, 2nd revised edn. (Springer, Berlin, 1996)

    Google Scholar 

  10. G.L. Harris (ed.), Properties of Silicon Carbide. EMIS Datareview Series, vol. 13 (INSPEC, London, 1995)

    Google Scholar 

  11. J.H. Edgar (ed.), Properties of Group III Nitrides. EMIS Datareview Series, vol. 11 (INSPEC, London, 1994)

    Google Scholar 

  12. L. Vegard, [De]Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys. 5, 17 (1921). (in German)

    ADS  Google Scholar 

  13. M.F. Thorpe, E.J. Garboczi, Elastic properties of central-force networks with bond-length mismatch. Phys. Rev. B 42, 8405 (1990)

    ADS  Google Scholar 

  14. W.B. Pearson, A Handbook of Lattice Spacing and Structures of Metals and Alloys, vol. 1 (Pergamon Press, London, 1958)

    Google Scholar 

  15. D.R. Yoder-Short, U. Debska, J.K. Furdyna, Lattice parameters of Zn\(_{1-x}\)Mn\(_x\)Se and tetrahedral bond lengths in \(\rm A^{\rm II}\rm _{1-x}\rm Mn\rm _x\rm B\rm ^{\rm VI}\) alloys. J. Appl. Phys. 58, 4056 (1985)

    ADS  Google Scholar 

  16. J.C. Mikkelsen Jr., J.B. Boyce, Extended X-ray absorption fine-structure study of Ga\(_{1-x}\)In\(_x\)As random solid solutions. Phys. Rev. B 28, 7130 (1983)

    ADS  Google Scholar 

  17. A. Balzarotti, N. Motta, A. Kisiel, M. Zimnal-Starnawska, M.T. Czyzyk, Model of the local structure of random ternary alloys: experiment versus theory. Phys. Rev. B 31, 7526 (1985)

    ADS  Google Scholar 

  18. J.L. Martins, A. Zunger, Bond lengths around isovalent impurities and in semiconductor solid solutions. Phys. Rev. B 30, 6217 (1984)

    ADS  Google Scholar 

  19. J.C. Mikkelsen Jr., J.B. Boyce, Atomic scale structure of random solid solutions: extended X-ray absorption fine-structure study of Ga\(_{1-x}\)In\(_x\)As. Phys. Rev. Lett. 49, 1412 (1982)

    ADS  Google Scholar 

  20. T. Fukui, Atomic structure model for Ga\(_{1-x}\)In\(_x\)As solid solutions. J. Appl. Phys. 57, 5188 (1985)

    ADS  Google Scholar 

  21. J.F. Nye, Physical Properties of Crystals (Clarendon Press, Oxford, 1972)

    Google Scholar 

  22. A.S. Saada, Elasticity Theory and Applications (Pergamon Press, New York, 1974)

    MATH  Google Scholar 

  23. D.J. Dunstan, Strain and strain relaxation in semiconductors. J. Mater. Sci., Mater. Electron. 8, 337 (1997)

    Google Scholar 

  24. K.-H. Hellwege, A.M. Hellwege, Landolt-Börnstein New Series Group III, vol. 2, Elastic, Piezoelectric, Piezooptic, Electrooptic Constants, and Nonlinear Dielectric Susceptibilities of Crystals, 6th edn. (Springer, Berlin, 1966)

    Google Scholar 

  25. K.-H. Hellwege, A.M. Hellwege, Landolt-Börnstein New Series Group III, vol. 1, Elastic, Piezoelectric, Piezooptic and Electrooptic Constants of Crystals, 6th edn. (Springer, Berlin, 1966)

    Google Scholar 

  26. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815 (2001)

    ADS  Google Scholar 

  27. G. Carlotti, D. Fioretto, G. Socino, E. Verona, Brillouin scattering determination of the whole set of elastic constants of a single transparent film of hexagonal symmetry. J. Phys. Condens. Matter 7, 9147 (1995)

    ADS  Google Scholar 

  28. R.S. Lakes, Foam structures with a negative Poisson’s ratio. Science 235, 1038 (1987)

    ADS  Google Scholar 

  29. E. Pasternak, A.V. Dyskin, Architectured materials with inclusions having negative Poisson’s ratio or negative stiffness, in Architectured Materials in Nature and Engineering, ed. by Y. Estrin, Y. Bréchet, J. Dunlop, P. Fratzl (Springer, Cham, 2019)

    Google Scholar 

  30. A. Ballato, Poisson’s ratio for tetragonal, hexagonal, and cubic crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 56 (1996)

    Google Scholar 

  31. C.G. Van de Walle, R.M. Martin, Theoretical calculation of heterojunction discontinuities in the Si/Ge system. Phys. Rev. B 34, 5621 (1986)

    ADS  Google Scholar 

  32. L. Kleinman, Deformation potentials in silicon. I. Uniaxial strain. Phys. Rev. 128, 2614 (1962)

    MATH  Google Scholar 

  33. O.H. Nielsen, R.M. Martin, Stress in semiconductors: ab initio calculations on Si, Ge, and GaAs. Phys. Rev. B 32, 3792 (1985)

    ADS  Google Scholar 

  34. W.A. Jesser, D. Kuhlmann-Wilsdorf, On the theory of interfacial energy and elastic strain of epitaxial overgrowth in parallel alignment on single crystal substrates. Phys. Status Solidi 19, 95 (1967)

    Google Scholar 

  35. F.C. Frank, J.H. van der Merve, Proc. R. Soc. Lond. A 198, 205 (1949)

    ADS  Google Scholar 

  36. F.C. Frank, J.H. van der Merve, Proc. R. Soc. Lond. A 198, 216 (1949)

    ADS  Google Scholar 

  37. F.C. Frank, J.H. van der Merve, Proc. R. Soc. Lond. A 200, 125 (1949)

    ADS  Google Scholar 

  38. J.H. Van der Merve, Crystal interfaces. Part I. Semi-infinite crystals. J. Appl. Phys. 34, 117 (1963)

    Google Scholar 

  39. J.H. Van der Merve, C.A.B. Ball, Energy of interfaces between crystals, in Epitaxial Growth. Part B, ed. by J.W. Matthews (Academic Press, New York, 1975), pp. 493–528

    Google Scholar 

  40. C.A.B. Ball, J.H. Van der Merve, The growth of dislocation-free layers, in Dislocations in Solids, vol. 6, ed. by F.R.N. Nabarro (North-Holland, Amsterdam, 1983)

    Google Scholar 

  41. W.A. Jesser, J.H. Van der Merve, An exactly solvable model for calculating critical misfit and thickness in epitaxial superlattices. II. Layers of unequal elastic constants and thicknesses. J. Appl. Phys. 63, 1928 (1988)

    Google Scholar 

  42. J.W. Matthews, A.E. Blakeslee, Defects in epitaxial multilayers I. Misfit dislocations. J. Cryst. Growth 27, 118 (1974)

    ADS  Google Scholar 

  43. J.W. Matthews, S. Mader, T.B. Light, Accommodation of misfit across the interface between crystals of semiconducting elements or compounds. J. Appl. Phys. 41, 3800 (1970)

    ADS  Google Scholar 

  44. C.A.B. Ball, On bonding and structure of epitaxial bicrystals. Phys. Status Solidi 42, 357 (1970)

    Google Scholar 

  45. R. Beanland, D.J. Dunstan, P.J. Goodhew, Plasic relaxation and relaxed buffer layers for semiconductor epitaxy. Adv. Phys. 45, 87 (1996)

    ADS  Google Scholar 

  46. I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, N. Sawaki, Effects of a buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga\(_{1-x}\)Al\(_x\)N \((0 < x = 0.4)\) films grown on sapphire substrate by MOVPE. J. Cryst. Growth 98, 209 (1989)

    Google Scholar 

  47. J.N. Kuznia, M. Asif Khan, D.T. Olson, R. Kaplan, J. Freitas, Influence of buffer layers on the deposition of high quality single crystal GaN over sapphire substrates. J. Appl. Phys. 73, 4700 (1993)

    Google Scholar 

  48. R.C. Powell, N.-E. Lee, Y.-W. Kim, J.E. Greene, Heteroepitaxial wurtzite and zincblende structure GaN grown by reactive-ion molecular-beam epitaxy: growth kinetics, microstructure, and properties. J. Appl. Phys. 73, 189 (1993)

    ADS  Google Scholar 

  49. P. Kung, C.J. Sun, A. Saxler, H. Ohsato, M. Razeghi, Crystallography of epitaxial growth of wurtzite-type thin films on sapphire substrates. J. Appl. Phys. 75, 4515 (1994)

    ADS  Google Scholar 

  50. A. Zur, T.C. McGill, Lattice match: an application to heteroepitaxy. J. Appl. Phys. 55, 378 (1984)

    ADS  Google Scholar 

  51. S.K. Mathis, A.E. Romanov, L.F. Chen, G.E. Beltz, W. Pompe, J.S. Speck, Modeling of threading dislocation reduction in growing GaN layers. J. Crystal Growth 231, 371 (2001)

    ADS  Google Scholar 

  52. E.A. Fitzgerald, A.Y. Kim, M.T. Currie, T.A. Langdo, G. Taraschi, M.T. Bulsara, Dislocation dynamics in relaxed graded composition semiconductors. Mat. Sci. Eng. B 67, 53 (1999)

    Google Scholar 

  53. J.E. Ayers, Low-temperature and metamorphic buffer layers, in Handbook of Crystal Growth—Thin Films and Epitaxy: Basic Techniques, vol. 3 Part A, 2nd edn., ed. by T.F. Kuech (Elsevier, Amsterdam, 2015), pp. 1007–1056

    Google Scholar 

  54. R.W. McClelland, C.O. Bozler, J.C.C. Fan, A technique for producing epitaxial films on reusable substrates. Appl. Phys. Lett. 37, 560 (1980)

    ADS  Google Scholar 

  55. P. Gibart, Metal organic vapour phase epitaxy of GaN and lateral overgrowth. Rep. Prog. Phys. 67, 667 (2004)

    ADS  Google Scholar 

  56. Y.H. Lo, New approach to grow pseudomorphic structures over the critical thickness. Appl. Phys. Lett. 59, 2311 (1991)

    ADS  Google Scholar 

  57. D. Teng, Y.H. Lo, Dynamic model for pseudomorphic structures grown on compliant substrates: an approach to extend the critical thickness. Appl. Phys. Lett. 62, 43 (1993)

    ADS  Google Scholar 

  58. W.A. Jesser, J.H. van der Merve, P.M. Stoop, Misfit accommodation by compliant substrates. J. Appl. Phys. 85, 2129 (1999)

    ADS  Google Scholar 

  59. K. Vanhollebeke, I. Moerman, P. Van Daele, P. Demeester, Compliant substrate technology: integration of mismatched materials for opto-electronic applications. Prog. Cryst. Growth Charact. Mater. 41, 1 (2000)

    Google Scholar 

  60. J.E. Ayers, Compliant substrates for heteroepitaxial semiconductor devices: theory, experiment, and current directions. J. Electron. Mater. 37, 1151 (2008)

    Google Scholar 

  61. A.E. Romanov, W. Pompe, G. Beltz, J.S. Speck, Modeling of threading dislocation density reduction in heteroepitaxial layers. Phys. Stat. Sol. B 198, 599 (1996)

    ADS  Google Scholar 

  62. S. Bauer, A. Rosenauer, P. Link, W. Kuhn, J. Zweck, W. Gebhardt, Misfit dislocations in epitaxial ZnTe/GaAs (001) studied by HRTEM. Ultramicroscopy 51, 221 (1993)

    Google Scholar 

  63. G. Kudlek, N. Presser, U.W. Pohl, J. Gutowski, J. Lilja, E. Kuusisto, K. Imai, M. Pessa, K. Hingerl, H. Sitter, Exciton complexes in ZnSe layers: a tool for probing the strain distribution. J. Cryst. Growth 117, 309 (1992)

    ADS  Google Scholar 

  64. G. Kudlek, Struktur und Dynamik exzitonischer Komplexe in verspannten ZnSe- und ZnTe-Heteroschichten, PhD Thesis, Technische Universität Berlin, D83, Berlin, 1992 (in German)

    Google Scholar 

  65. J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd edn. (Wiley, New York, 1982)

    MATH  Google Scholar 

  66. S. Amelinckx, Dislocations in particular structures, in Dislocations in Solids, vol. 2, ed. by F.R.N. Nabarro (North-Holland, Amsterdam, 1979)

    Google Scholar 

  67. P.M. Marée, J.C. Barbour, J.F. Van der Veen, K.L. Kavanagh, C.W.T. Bulle-Lieuwma, M.P.A. Viegers, Generation of misfit dislocations in semiconductors. J. Appl. Phys. 62, 4413 (1987)

    ADS  Google Scholar 

  68. N. Thompson, Dislocation nodes in face-centred cubic lattices. Proc. Phys. Soc. B 66, 481 (1953)

    ADS  MATH  Google Scholar 

  69. M. Inoue, K. Suzuki, H. Amasuga, M. Nakamura, Y. Mera, S. Takeuchi, K. Maeda, Reliable image processing that can extract an atomically-resolved line shape of partial dislocations in semiconductors from plan-view high-resolution electron microscopic images. Ultramicroscopy 75, 5 (1998)

    Google Scholar 

  70. H.P.D. Schenk, G.D. Kipshidze, U. Kaiser, A. Fissel, J. Kräußlich, J. Schulze, W. Richter, Investigation of two-dimensional growth of \(\rm AlN (0001)\) on \(\rm Si (111)\) by plasma-assisted molecular beam epitaxy. J. Cryst. Growth 200, 45 (1999)

    ADS  Google Scholar 

  71. N. Mante, S. Rennesson, E. Frayssinet, L. Largeau, F. Semond, J.L. Rouvière, G. Feuillet, P. Vennéguès, Proposition of a model elucidating the AlN-on-Si (111) microstructure. J. Appl. Phys. 123, 215701 (2018)

    ADS  Google Scholar 

  72. H. Kroemer, Polar-on-nonpolar epitaxy. J. Cryst. Growth 81, 193 (1987)

    ADS  Google Scholar 

  73. O. Supplie, O. Romanyuk, C. Koppka, M. Steidl, A. Nägelein, A. Paszuk, L. Winterfeld, A. Dobrich, P. Kleinschmid, E. Runge, T. Hannappel, Metalorganic vapor phase epitaxy of III-V-on-silicon: experiment and theory. Prog. Cryst. Growth Charact. Mater. 64, 103 (2018)

    Google Scholar 

  74. B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, R. Langer, How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches. Semicond. Sci. Technol. 33, 093002 (2018)

    ADS  Google Scholar 

  75. T. Sakamoto, G. Hashiguchi, Si (001)-2 \(\times \) 1 single-domain structure obtained by high temperature annealing. Jpn. J. Appl. Phys. 25, L78 (1986)

    ADS  Google Scholar 

  76. P. Ruterana, Convergent beam electron diffraction investigationof inversion domains in GaN. J. Alloys Compounds 401, 199 (2005)

    Google Scholar 

  77. A. Berghezan, A. Fourdeux, S. Amelinckx, Transmission electron microscopy studies of dislocations and stacking faults in a hexagonal metal-zinc. Acta Met. 9, 464 (1961)

    Google Scholar 

  78. S. Vézian, J. Massies, F. Semond, N. Grandjean, P. Vennéguès, In situ imaging of threading dislocation terminations at the surface of \({\rm GaN}(0001)\) epitaxialy grown on \({\rm Si}(111)\). Phys. Rev. B 61, 7618 (2000)

    ADS  Google Scholar 

  79. A.R. Smith, V. Ramachandran, R.M. Feenstra, D.W. Grewe, M.-S. Shin, M. Skowronski, J. Neugebauer, J.E. Northrup, Wurtzite GaN surface structures studied by scanning tunneling microscopy and reflection high energy electron diffraction. J. Vac. Sci. Technol. A 16, 1641 (1998)

    ADS  Google Scholar 

  80. H. Heinke, M.O. Möller, D. Hommel, G. Landwehr, Relaxation and mosaicity profiles in epitaxial layers studied by high resolution X-ray diffraction. J. Cryst. Growth 135, 41 (1994)

    ADS  Google Scholar 

  81. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Gött. 26, 98 (1918). (Determination of size and inner structure of colloidal particles by X-rays, in German)

    Google Scholar 

  82. R. Chierchia, T. Böttcher, H. Heinke, S. Einfeldt, S. Figge, D. Hommel, Microstructure of heteroepitaxial GaN revealed by high resolution X-ray diffraction. J. Appl. Phys. 93, 8918 (2003)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo W. Pohl .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pohl, U.W. (2020). Structural Properties of Heterostructures. In: Epitaxy of Semiconductors. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-43869-2_2

Download citation

Publish with us

Policies and ethics