Skip to main content

Sources of Gravitational Fields

  • Chapter
  • First Online:
Introduction to Einstein’s Theory of Relativity

Part of the book series: Undergraduate Texts in Physics ((UNTEPH))

  • 1905 Accesses

Abstract

In this chapter we shall first find a general expression of the acceleration of gravity due to a mass distribution. Then we shall deduce the solution of Einstein’s field equations inside an incompressible star—the internal Schwarzschild solution . Furthermore we shall present Israel’s formalism for describing singular mass shells in the general theory of relativity, and apply this first to a shell consisting of dust particles, and then to find a source of the conformally flat, spherically symmetric Levi-Civita—Bertotti—Robinson metric , and finally to the Kerr spacetime . Lastly we shall introduce a river model of space .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Israel, W.: Singular hypersurfaces and thin shells in general relativity. Nuovo Cimento 44B, 1–14 (1966)

    Article  Google Scholar 

  2. Misner C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Princeton University Press (1973)

    Google Scholar 

  3. Lightman, A.P., Press, W.H., Price, R.H., Teukolsky, S.A.: Problem Book in Relativity and Gravitation. Princeton University Press (1975)

    Google Scholar 

  4. An English translation of the 1917-article is: T. Levi-Civita, The physical reality of some normal spaces of Bianchi. Gen. Rel. Grav. 43, 2307 (2011)

    Google Scholar 

  5. Bertotti, B.: Uniform electromagnetic field in the theory of general relativity. Phys. Rev. 116, 1331–1333 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  6. Robinson, I.: A solution of the Maxwell-Einstein equations. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astr. Phys. 7, 351 (1959)

    Google Scholar 

  7. Grøn, Ø., Johannesen, S.: A solution of the Einstein-Maxwell equations describing conformally flat spacetime outside a charged domain wall. Eur. Phys. J. Plus. 126, 89 (2011)

    Google Scholar 

  8. Lopez, C.A.: Extended model of the electron in general relativity. Phys. Rev. D30, 313–316 (1984)

    Article  ADS  Google Scholar 

  9. Grøn, Ø.: New derivation of Lopez’s source of the Kerr-Newman field. Phys. Rev. D32, 1588–1589 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  10. Braeck, S., Grøn, Ø.: A river model of space. Eur. Phys. J. Plus 128, 24 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Øyvind Grøn .

Exercises

Exercises

  1. 11.1

    The Schwarzschildde Sitter metric

ShowSchwarzschild–de Sitter metric that the solution of Einstein’s field equations with a cosmological constant in a static, spherically symmetric space is

$$ {\text{d}}s^{2} = - \left( {1 - \frac{{R_{S} }}{r} + \frac{{r^{2} }}{{R_{H}^{2} }}} \right)c^{2} {\text{d}}t^{2} + \frac{{dr^{2} }}{{1 - \frac{{R_{S} }}{r} + \frac{{r^{2} }}{{R_{H}^{2} }}}} + r^{2} {\text{d}}\Omega ^{2} , $$
(11.172)

where \( R_{S} = 2GM/c^{2} \) is the Schwarzschild radius of the central mass, and \( R_{H} = \sqrt {3/\Lambda } \) is the de-Sitter horizon radius which is the horizon radius in the case that there is no central mass, \( R_{S} = 0 \).

  1. 11.2

    A spherical domain wall described by the Israel formalism

Consider a static, spherically symmetric domain wall in empty space with mass density \( \sigma \) and radius R. Show that the mass M of the Schwarzschild spacetime outside the wall is

$$ M = \left( {1 - 2\pi \sigma R} \right)4\pi \sigma R^{2} . $$
(11.173)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grøn, Ø. (2020). Sources of Gravitational Fields. In: Introduction to Einstein’s Theory of Relativity. Undergraduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-43862-3_11

Download citation

Publish with us

Policies and ethics