Skip to main content

Quantum Zentanglement: Combining Picbreeder and Wave Function Collapse to Create Zentangles®

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 12103)

Abstract

This paper demonstrates a computational approach to generating art reminiscent of Zentangles by combining Picbreeder with Wave Function Collapse (WFC). Picbreeder interactively evolves images based on user preferences, and selected image tiles are sent to WFC. WFC generates patterns by filling a grid with various rotations of the tile images, placed according to simple constraints. Then other images from Picbreeder act as templates for combining patterns into a final Zentangle image. Although traditional Zentangles are black and white, the system also produces color Zentangles. Automatic evolution experiments using fitness functions instead of user selection were also conducted. Although certain fitness functions occasionally produce degenerate images, many automatically generated Zentangles are aesthetically pleasing and consist of naturalistic patterns. Interactively generated Zentangles are pleasing because they are tailored to the preferences of the user creating them.

Keywords

  • Zentangle
  • Compositional Pattern Producing Networks
  • Wave Function Collapse
  • Neuroevolution
  • Interactive evolution

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-43859-3_4
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-43859-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.

Credit to Elissa Schrum.

Fig. 2.
Fig. 3.

Notes

  1. 1.

    https://arcadia-clojure.itch.io/proc-skater-2016.

  2. 2.

    http://www.cavesofqud.com/.

  3. 3.

    https://libraries.io/github/mewo2/oisin.

  4. 4.

    https://zentangle.com/.

  5. 5.

    https://github.com/schrum2/MM-NEAT.

References

  1. Arnheim, R.: Art and Visual Perception: A Psychology of the Creative Eye. University of California Press, Berkeley (1954)

    Google Scholar 

  2. Birkhoff, G.: Aesthetic Measure. Harvard University Press, Cambridge (1933)

    MATH  Google Scholar 

  3. Cheney, N., MacCurdy, R., Clune, J., Lipson, H.: Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding. In: Genetic and Evolutionary Computation Conference. ACM (2013)

    Google Scholar 

  4. Clune, J., Lipson, H.: Evolving three-dimensional objects with a generative encoding inspired by developmental biology. In: European Conference on Artificial Life, pp. 141–148 (2011)

    Google Scholar 

  5. Dawkins, R.: The Blind Watchmaker. Longman Scientific and Technical, Harlow (1986)

    Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    CrossRef  Google Scholar 

  7. Gatys, L., Ecker, A., Bethge, M.: A neural algorithm of artistic style. J. Vis. 16(12), 326 (2016)

    CrossRef  Google Scholar 

  8. Greenfield, G.: Robot paintings evolved using simulated robots. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 611–621. Springer, Heidelberg (2006). https://doi.org/10.1007/11732242_58

    CrossRef  Google Scholar 

  9. Gumin, M.: WaveFunctionCollapse. GitHub repository (2016). https://github.com/mxgmn/WaveFunctionCollapse

  10. den Heijer, E., Eiben, A.E.: Comparing aesthetic measures for evolutionary art. In: Di Chio, C., et al. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 311–320. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12242-2_32

    CrossRef  Google Scholar 

  11. Hoenig, F.: Defining Computational Aesthetics. Computational Aesthetics in Graphics, Visualization and Imaging, pp. 13–18 (2005)

    Google Scholar 

  12. Hollingsworth, B., Schrum, J.: Infinite art gallery: a game world of interactively evolved artwork. In: IEEE Congress on Evolutionary Computation (2019)

    Google Scholar 

  13. Jónsson, B.T., Hoover, A.K., Risi, S.: Interactively evolving compositional sound synthesis networks. In: Genetic and Evolutionary Computation Conference, pp. 321–328. ACM (2015)

    Google Scholar 

  14. Kaplan, C.S.: Computer generated Islamic star patterns. In: Bridges 2000: Mathematical Connections in Art, Music and Science, pp. 105–112 (2000)

    Google Scholar 

  15. Karth, I., Smith, A.M.: WaveFunctionCollapse is constraint solving in the wild. In: Foundations of Digital Games. ACM (2017)

    Google Scholar 

  16. Kopeschny, D.A.: The phenomenological experience of Zentangle and the implications for art therapy. Master’s thesis, St. Stephen’s College, Alberta, Canada (2016)

    Google Scholar 

  17. Mordvintsev, A., Olah, C., Tyka, M.: Inceptionism: Going Deeper Into Neural Networks (2015). https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

  18. Neumann, A., Szpak, Z.L., Chojnacki, W., Neumann, F.: Evolutionary image composition using feature covariance matrices. In: Genetic and Evolutionary Computation Conference. ACM (2017)

    Google Scholar 

  19. Patrascu, C., Risi, S.: Artefacts: minecraft meets collaborative interactive evolution. In: Computational Intelligence and Games, pp. 349–356. IEEE (2016)

    Google Scholar 

  20. Risi, S., Lehman, J., D’Ambrosio, D.B., Hall, R., Stanley, K.O.: Petalz: search-based procedural content generation for the casual gamer. IEEE Trans. Comput. Intell. AI Games 8, 244–255 (2015)

    CrossRef  Google Scholar 

  21. Secretan, J., et al.: Picbreeder: a case study in collaborative evolutionary exploration of design space. Evol. Comput. 19(3), 373–403 (2011)

    CrossRef  Google Scholar 

  22. Sims, K.: Interactive evolution of dynamical systems. In: European Conference on Artificial Life, pp. 171–178 (1992)

    Google Scholar 

  23. Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development. Genet. Program. Evolvable Mach. 8(2), 131–162 (2007). https://doi.org/10.1007/s10710-007-9028-8

    MathSciNet  CrossRef  Google Scholar 

  24. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15, 185–212 (2009)

    CrossRef  Google Scholar 

  25. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10, 99–127 (2002)

    CrossRef  Google Scholar 

  26. Tweraser, I., Gillespie, L.E., Schrum, J.: Querying across time to interactively evolve animations. In: Genetic and Evolutionary Computation Conference (2018)

    Google Scholar 

  27. Woolley, B.G., Stanley, K.O.: On the deleterious effects of a priori objectives on evolution and representation. In: Genetic and Evolutionary Computation Conference, pp. 957–964. ACM (2011)

    Google Scholar 

  28. Zhang, J., Taarnby, R., Liapis, A., Risi, S.: DrawCompileEvolve: sparking interactive evolutionary art with human creations. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART 2015. LNCS, vol. 9027, pp. 261–273. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16498-4_23

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Schrum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Krolikowski, A., Friday, S., Quintanilla, A., Schrum, J. (2020). Quantum Zentanglement: Combining Picbreeder and Wave Function Collapse to Create Zentangles®. In: Romero, J., Ekárt, A., Martins, T., Correia, J. (eds) Artificial Intelligence in Music, Sound, Art and Design. EvoMUSART 2020. Lecture Notes in Computer Science(), vol 12103. Springer, Cham. https://doi.org/10.1007/978-3-030-43859-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43859-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43858-6

  • Online ISBN: 978-3-030-43859-3

  • eBook Packages: Computer ScienceComputer Science (R0)