Skip to main content

Ultrasound in the Management of Glaucoma

  • Chapter
  • First Online:
Advances in Ocular Imaging in Glaucoma

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 455 Accesses

Abstract

Ultrasound can provide diagnostic information to guide the management of glaucoma. The utility of echography is especially evident in cases where direct visualization or optical imaging techniques are precluded by normal anatomy or media opacities. Conventional ultrasound can overcome opacities such as dense cataracts or corneal scars to produce images of the posterior segment and provide evidence of glaucoma etiologies. Ultrasound biomicroscopy (UBM) can acquire high-resolution images of the anterior segment and of structures obscured by and posterior to the iris that may glaucoma. Recent developments in ultrasound technology have also enabled the measurement of biomechanical properties of ocular tissues to establish a relationship between ultrasound elastography and glaucoma. Despite the development of high-resolution optical imaging techniques, ultrasound remains a useful clinical tool with an evolving scope in the management of glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pavlin CJ, Foster FS. Ultrasound biomicroscopy. High-frequency ultrasound imaging of the eye at microscopic resolution. Radiol Clin N Am. 1998;36:1047–58.

    Article  CAS  PubMed  Google Scholar 

  2. Darnley-Fisch DA, Byrne SF, Hughes JR, Parrish RK, Feuer WJ. Contact B-scan echography in the assessment of optic nerve cupping. Am J Ophthalmol. 1990;109:55–61.

    Article  CAS  PubMed  Google Scholar 

  3. Thau A, et al. New classification system for pediatric glaucoma: implications for clinical care and a research registry. Curr Opin Ophthalmol. 2018;29:385–94.

    Article  PubMed  Google Scholar 

  4. Sampaolesi R, Caruso R. Ocular echometry in the diagnosis of congenital glaucoma. Arch Ophthalmol. 1982;100:574–7.

    Article  CAS  PubMed  Google Scholar 

  5. Gupta V, Jha R, Srinivasan G, Dada T, Sihota R. Ultrasound biomicroscopic characteristics of the anterior segment in primary congenital glaucoma. J Am Assoc Pediatr Ophthalmol Strabismus. 2007;11:546–50.

    Article  Google Scholar 

  6. Potash SD, Tello C, Liebmann J, Ritch R. Ultrasound biomicroscopy in pigment dispersion syndrome. Ophthalmology. 1994;101:332–9.

    Article  CAS  PubMed  Google Scholar 

  7. Aslanides IM, et al. High frequency ultrasound imaging in pupillary block glaucoma. Br J Ophthalmol. 1995;79:972–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smith SD, et al. Evaluation of the anterior chamber angle in glaucoma: a report by the American Academy of Ophthalmology. Ophthalmology. 2013;120:1985–97.

    Article  PubMed  Google Scholar 

  9. Pavlin CJ, Ritch R, Foster FS. Ultrasound biomicroscopy in plateau iris syndrome. Am J Ophthalmol. 1992;113:390–5.

    Article  CAS  PubMed  Google Scholar 

  10. Man X, Costa R, Ayres BM, Moroi SE. Acetazolamide-induced bilateral ciliochoroidal effusion syndrome in plateau iris configuration. Am J Ophthalmol Case Rep. 2016;3:14–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fourman S. Angle-closure glaucoma complicating ciliochoroidal detachment. Ophthalmology. 1989;96:646–53.

    Article  CAS  PubMed  Google Scholar 

  12. Piette S, et al. Ultrasound biomicroscopy in uveitis-glaucoma-hyphema syndrome. Am J Ophthalmol. 2002;133:839–41.

    Article  PubMed  Google Scholar 

  13. Gentile RC, et al. Diagnosis of traumatic cyclodialysis by ultrasound biomicroscopy. Ophthalmic Surg Lasers. 1996;27:97–105.

    Article  CAS  PubMed  Google Scholar 

  14. Ciulla TA, Beck AD, Topping TM, Baker AS. Blebitis, early endophthalmitis, and late endophthalmitis after glaucoma-filtering surgery. Ophthalmology. 1997;104:986–95.

    Article  CAS  PubMed  Google Scholar 

  15. Ayyala RS, Bellows AR, Thomas JV, Hutchinson BT. Bleb infections: clinically different courses of “blebitis” and endophthalmitis. Ophthalmic Surg Lasers. 1997;28:452–60.

    Article  CAS  PubMed  Google Scholar 

  16. Burgoyne CF, Downs JC. Premise and prediction–how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. J Glaucoma. 2008;17(4):318.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nguyen TD, Ethier CR. Biomechanical assessment in models of glaucomatous optic neuropathy. Exp Eye Res. 2015;141:125–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sigal IA, Ethier CR. Biomechanics of the optic nerve head. Exp Eye Res. 2009;88(4):799–807.

    Article  CAS  PubMed  Google Scholar 

  19. Burgoyne CF, et al. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24(1):39–73.

    Article  PubMed  Google Scholar 

  20. Sigal IA, et al. Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2005;46(11):4189–99.

    Article  PubMed  Google Scholar 

  21. Sigal IA, et al. A method to estimate biomechanics and mechanical properties of optic nerve head tissues from parameters measurable using optical coherence tomography. IEEE Trans Med Imaging. 2014;33(6):1381–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Coudrillier B, et al. Biomechanics of the human posterior sclera: age-and glaucoma-related changes measured using inflation testing. Invest Ophthalmol Vis Sci. 2012;53(4):1714–28.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Girard MJ, et al. Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations. Invest Ophthalmol Vis Sci. 2011;52(8):5656–69.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Grytz R, et al. Material properties of the posterior human sclera. J Mech Behav Biomed Mater. 2014;29:602–17.

    Article  PubMed  Google Scholar 

  25. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fazio MA, et al. Age-related changes in human peripapillary scleral strain. Biomech Model Mechanobiol. 2014;13(3):551–63.

    Article  PubMed  Google Scholar 

  27. Grytz R, et al. Age-and race-related differences in human scleral material properties. Invest Ophthalmol Vis Sci. 2014;55(12):8163–72.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fazio MA, et al. Human scleral structural stiffness increases more rapidly with age in donors of African descent compared to donors of European descent. Invest Ophthalmol Vis Sci. 2014;55(11):7189–98.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ethier CR, Johnson M, Ruberti J. Ocular biomechanics and biotransport. Annu Rev Biomed Eng. 2004;6:249–73.

    Article  CAS  PubMed  Google Scholar 

  30. Girard MJ, et al. In vivo optic nerve head biomechanics: performance testing of a three-dimensional tracking algorithm. J R Soc Interface. 2013;10(87):20130459.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Woo SL, et al. Mathematical model of the corneo-scleral shell as applied to intraocular pressure-volume relations and applanation tonometry. Ann Biomed Eng. 1972;1(1):87–98.

    Article  CAS  PubMed  Google Scholar 

  32. Dikici AS, et al. In vivo evaluation of the biomechanical properties of optic nerve and peripapillary structures by ultrasonic shear wave elastography in glaucoma. Iran J Radiol. 2016;13(2):e36849.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Agladioglu K, et al. An evaluation of ocular elasticity using real-time ultrasound elastography in primary open-angle glaucoma. Br J Radiol. 2016;89(1060):20150429.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Özen Ö, et al. Evaluation of the optic nerve and scleral-choroidal-retinal layer with ultrasound elastography in glaucoma and physiological optic nerve head cupping. Med Ultrason. 2018;20(1):76–9.

    Article  Google Scholar 

  35. Wang S, Larin KV. Optical coherence elastography for tissue characterization: a review. J Biophotonics. 2015;8(4):279–302.

    Article  PubMed  Google Scholar 

  36. Kennedy BF, Kennedy KM, Sampson DD. A review of optical coherence elastography: fundamentals, techniques and prospects. IEEE J Sel Top Quantum Electron. 2014;20(2):272–88.

    Article  CAS  Google Scholar 

  37. Devalla SK, et al. A deep learning approach to digitally stain optical coherence tomography images of the optic nerve head. Invest Ophthalmol Vis Sci. 2018;59(1):63–74.

    Article  PubMed  Google Scholar 

  38. Qu Y, et al. Quantified elasticity mapping of retinal layers using synchronized acoustic radiation force optical coherence elastography. Biomed Opt Express. 2018;9(9):4054–63.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Qu Y, et al. Miniature probe for mechanical properties of vascular lesions using acoustic radiation force optical coherence elastography (Conference Presentation). In: Optical elastography and tissue biomechanics III. International Society for Optics and Photonics; 2016.

    Google Scholar 

  40. Zhu J, et al. 3D mapping of elastic modulus using shear wave optical micro-elastography. Sci Rep. 2016;6:35499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhu J, et al. Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography. Appl Phys Lett. 2017;110(20):201101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zhu J, et al. Imaging shear wave propagation for elastic measurement using OCT Doppler variance method. In: Optical coherence tomography and coherence domain optical methods in biomedicine XX. International Society for Optics and Photonics; 2016.

    Google Scholar 

  43. Qu Y, et al. Acoustic radiation force optical coherence elastography of corneal tissue. IEEE J Sel Top Quantum Electron. 2016;22(3):288–94.

    Article  Google Scholar 

  44. Zhu J, et al. Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method. Opt Lett. 2015;40(9):2099–102.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhu J, et al. Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography. Opt Lett. 2018;43(10):2388–91.

    Article  PubMed  Google Scholar 

  46. Li J, et al. Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo. Laser Phys Lett. 2014;11(6):065601.

    Article  Google Scholar 

  47. Li J, et al. Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo. J Biomed Opt. 2013;18(12):121503.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Han Z, et al. Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model. J Mech Behav Biomed Mater. 2017;66:87–94.

    Article  PubMed  Google Scholar 

  49. Roy AS, et al. Air-puff associated quantification of non-linear biomechanical properties of the human cornea in vivo. J Mech Behav Biomed Mater. 2015;48:173–82.

    Article  Google Scholar 

  50. Ambroziński Ł, et al. Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity. Sci Rep. 2016;6:38967.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. He Y, et al. Confocal shear wave acoustic radiation force optical coherence elastography for imaging and quantification of the in vivo posterior eye. IEEE J Sel Top Quantum Electron. 2019;25(1):1–7.

    Article  Google Scholar 

  52. Qu Y, et al. In vivo elasticity mapping of posterior ocular layers using acoustic radiation force optical coherence elastography. Invest Ophthalmol Vis Sci. 2018;59(1):455–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Varghese T. Quasi-static ultrasound elastography. Ultrasound Clin. 2009;4(3):323.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Treece G, et al. Real-time quasi-static ultrasound elastography. Interface Focus. 2011;1(4):540–52.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Papadacci C, Bunting EA, Konofagou EE. 3D quasi-static ultrasound elastography with plane wave in vivo. IEEE Trans Med Imaging. 2017;36(2):357–65.

    Article  PubMed  Google Scholar 

  56. Vural M, et al. The evaluation of the retrobulbar orbital fat tissue and optic nerve with strain ratio elastography. Med Ultrason. 2015;17(1):45–8.

    Article  PubMed  Google Scholar 

  57. İnal M, et al. Evaluation of the optic nerve using strain and shear wave elastography in patients with multiple sclerosis and healthy subjects. Med Ultrason. 2017;19(1):39–44.

    Article  PubMed  Google Scholar 

  58. Li G-Y, Cao Y. Mechanics of ultrasound elastography. Proc Math Phys Eng Sci. 2017;473(2199):20160841.

    PubMed  PubMed Central  Google Scholar 

  59. Liu L, et al. Imaging the subcellular structure of human coronary atherosclerosis using micro–optical coherence tomography. Nat Med. 2011;17(8):1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bufi N, et al. Human primary immune cells exhibit distinct mechanical properties that are modified by inflammation. Biophys J. 2015;108(9):2181–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cai X, et al. Connection between biomechanics and cytoskeleton structure of lymphocyte and Jurkat cells: an AFM study. Micron. 2010;41(3):257–62.

    Article  CAS  PubMed  Google Scholar 

  62. Liang X, et al. Optical micro-scale mapping of dynamic biomechanical tissue properties. Opt Express. 2008;16(15):11052–65.

    Article  PubMed  Google Scholar 

  63. Song S, et al. Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source. Opt Lett. 2015;40(21):5007–10.

    Article  PubMed  Google Scholar 

  64. Sigal IA, et al. Reconstruction of human optic nerve heads for finite element modeling. Technol Health Care. 2005;13(4):313–29.

    Article  PubMed  Google Scholar 

  65. Grytz R, et al. Lamina cribrosa thickening in early glaucoma predicted by a microstructure motivated growth and remodeling approach. Mech Mater. 2012;44:99–109.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sigal IA, et al. Modeling individual-specific human optic nerve head biomechanics. Part II: influence of material properties. Biomech Model Mechanobiol. 2009;8(2):99–109.

    Article  PubMed  Google Scholar 

  67. Roberts MD, et al. Correlation between local stress and strain and lamina cribrosa connective tissue volume fraction in normal monkey eyes. Invest Ophthalmol Vis Sci. 2010;51(1):295–307.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Govindjee S, Mihalic PA. Computational methods for inverse finite elastostatics. Comput Methods Appl Mech Eng. 1996;136(1–2):47–57.

    Article  Google Scholar 

  69. Lu J, Zhou X, Raghavan ML. Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J Biomech. 2007;40(3):693–6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Institutes of Health under Grant R01HL-125084, Grant R01HL-127271, Grant R01EY-026091, Grant R01EY-021529, Grant P41EB-015890, Grant F31EY027666, and Grant R01EY-028662 and in part by the Air Force Office of Scientific Research under Grant FA9550-14-1-0034.

Compliance with Ethical Requirements

Jiun L. Do, MD, PhD, Youmin He, Yueqiao Qu, PhD, and Qifa Zhou, PhD, declare they have no conflict of interest. Zhongping Chen, PhD, has a financial interest in OCT Medical Imaging, Inc., which did not support this work, so there is no conflict of interest. No human studies were carried out by the authors for this chapter. All rabbit experiments were performed with adherence to the guidelines set forth by the University of California, Irvine Institutional Animal Care and Use Committee (IACUC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongping Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Do, J.L., He, Y., Qu, Y., Zhou, Q., Chen, Z. (2020). Ultrasound in the Management of Glaucoma. In: Varma, R., Xu, B.Y., Richter, G.M., Reznik, A. (eds) Advances in Ocular Imaging in Glaucoma. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-43847-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43847-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43846-3

  • Online ISBN: 978-3-030-43847-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics