Skip to main content

Revisiting Energy Policy and Planning in Future Living Cities

  • Chapter
  • First Online:
Biotechnology and Future Cities

Abstract

Rapid urbanization is causing an increased demand in energy, which is causing geopolitical challenges as global organizations call for a shift to more renewable sources, leading to economic outcries by oil-exporting countries. However, the shift to renewable energy, mainly through solar, has a challenge, that of energy storage in traditional batteries. However, there is a shift in the possibilities of energy storage through biotechnology (more specifically through proteins), leading to an increasing potential of solar energy. This will set to further supporting sustainable energy policies as the issue of storage is addressed, as well as the potential to create a decentralized energy grid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesina, O., Anzai, I. A., Avalos, J. L., & Barstow, B. (2017). Embracing biological solutions to the sustainable energy challenge. Chem, 2, 20–51.

    Article  Google Scholar 

  • Alderton, A., Davern, M., Nitvimol, K., Butterworth, I., Higgs, C., Ryan, E., & Badland, H. (2019). What is the meaning of urban liveability for a city in a low-to-middle-income country? Contextualising liveability for Bangkok, Thailand. Global Health, 15, 51.

    Google Scholar 

  • Alfredsson, E., Bengtsson, M., Brwon, H.S., Isenhour, C., Lorek, S., & Stevis, D. (2018). Why achieving the Paris agreement requires reduced overall consumption and production. Sustainability: Science, Practice and Policy, 14, 1–5.

    Google Scholar 

  • Ali, U. (2019, November 24). Could biomimicry revolutionise renewable energy? https://www.power-technology.com/features/featurecould-biomimicry-revolutionise-renewable-energy-5796192/.

  • Allam, Z. (2019). Enhancing renewable energy adoption in megacities through energy diversification, land fragmentation and fiscal mechanisms. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2019.101841.

  • Alsharif, M. H., Kim, J., & Kim, J. H. (2018). Opportunities and challenges of solar and wind energy in South Korea: A review. Sustainability, 10, 18–22.

    Article  Google Scholar 

  • Basso, T. P., Basso, T. O., Galo, C. R., & Basso, L. C. (2013). Towards the production of second generation ethanol from sugarcane bagasse in Brazil. In M. D. Matovic (Ed.), Biomass now: Cultivation and utilization (pp. 347–354). London: Intech.

    Google Scholar 

  • Castelli, F. (2018). Drivers of migration: Why do people move? Journal of Travel Medicine, 25, 1–7.

    Google Scholar 

  • Chen, H., Cong, T. N., Yang, W., Tan, C., Li, Y., & Ding, Y. (2009). Progress in electrical energy storage system: A critical review. Progress in Natural Science, 19, 291–312.

    Article  Google Scholar 

  • Dahiya, A. (2014). Bioenergy: Biomass to biofuels. Waltham, MA: Elsevier Science.

    Google Scholar 

  • De La Torre Ugarte, D. (2008). Opportunities and challenges of biofuels for the agricultural sector and the food security of developing countries. New York: United Nations.

    Google Scholar 

  • Dhunny, A. Z., Allam, Z., Lobine, D., & Lollchund, M. R. (2019). Sustainable renewable energy planning and wind farming optimization from a biodiversity perspective. Energy, 185, 1282–1297.

    Google Scholar 

  • Dhunny, A. Z., Doorga, J. R. S., Allam, Z., Lollchund, M. R., & Boojhawon, R. (2019). Identification of optimal wind, solar and hybrid wind-solar farming sites using fuzzy logic modelling. Energy, 188. https://doi.org/10.1016/j.energy.2019.116056.

  • Facchini, A., Kennedy, C., Stewart, I., & Mele, R. (2017). The energy metabolism of megacities. Applied Energy, 186, 86–95.

    Article  Google Scholar 

  • Fecheyr-Lippens, D., & Bhiwapurkar, P. (2017). Applying biomimicry to design building envelopes that lower energy consumption in a hot-humid climate. Architectural Science Review, 60, 360–370.

    Article  Google Scholar 

  • Hassan, M. H., & Kalam, M. A. (2013). An overview of biofuel as a renewable energy source: Development and challenges. Procedia Engineering, 56, 39–53.

    Article  Google Scholar 

  • Heidari, A., Hajinezhad, A., & Aslani, A. (2019). A sustainable power supply system, Iran’s opportunities via bioenergy. Environmental Progress & Sustainable Energy, 38, 171–188.

    Article  Google Scholar 

  • Help Net Security. (2019, November 25). Number of connected devices reached 22 billion, where is the revenue? https://www.helpnetsecurity.com/2019/05/23/connected-devices-growth/.

  • Hiremath, R. B., Kumar, B., Balachandra, P., & Ravindranath, N. H. (2011). Decentralized sustainable energy planning of Tumkur district, India. Environmental Progress & Sustainable Energy, 30, 248–258.

    Article  Google Scholar 

  • IEA. (2017). World energy outlook-2017. OECD/IEA: Paris, France.

    Google Scholar 

  • IEA. (2019, November 25). Global solar PV market set for spectacular growth over next 5 years. https://www.iea.org/newsroom/news/2019/october/global-solar-pv-market-set-for-spectacular-growth-over-next-5-years.html.

  • Ihssen, J., Braun, A., Faccio, G., Gajda-Schrantz, K., & Thöny-Meyer, L. (2014). Light harvesting proteins for solar fuel generation in bioengineered photoelectrochemical cells. Current Protein and Peptide Science, 15, 374–384.

    Article  Google Scholar 

  • IRENA. (2017a). Rethinking energy 2017. International Renewable Energy Agency: Abu Dhabi.

    Google Scholar 

  • IRENA. (2017b). Irena cost & competitiveness indicators: Rooftop solar pv. International Renewable Energy Agency: Abu Dhabi.

    Google Scholar 

  • IRENA. (2018a). Global energy transformation: A roadmap to 2050. International Renewable Energy Agency: Abu Dhabi.

    Google Scholar 

  • IRENA. (2018b). Renewable power generation costs in 2017. International Renewable Energy Agency: Abu Dhabi.

    Google Scholar 

  • Jung, K. A., Lim, S.-R., Kim, Y., & Park, J. M. (2017). Opportunity and challenge of seaweed bioethanol based on life cycle CO2 assessment. Environmental Progress & Sustainable Energy, 36, 200–207.

    Google Scholar 

  • Kabir, E., Kumar, P., Adelodun, A. A., & Kim, K. H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82, 894–900.

    Article  Google Scholar 

  • Kilbane, J. J., II. (2016). Future applications of biotechnology to the energy industry. Frontiers in Microbiology, 7, 86.

    Article  Google Scholar 

  • Knothe, G. (2010). History of vegetable oil-based diesel fuels. In G. Knothe, J. Krahl, & J. Van Gerpen (Eds.), The biodiesel handbook (2nd ed., pp. 5–19, Chapter 2). Champaign, IL: AOCS Press.

    Google Scholar 

  • Lee, J. T., & Callaway, D. S. (2018). The cost of reliability in decentralized solar power systems in sub-Saharan Africa. Nature Energy, 3, 960–968.

    Article  Google Scholar 

  • Liu, N., Yu, X., Wang, C., Li, C., Ma, L., & Lei, J. (2017). Energy-sharing model with price-based demand response for microgrids of peer-to-peer prosumers. IEEE Transaction on Power Systems, 32, 3569–3583.

    Article  Google Scholar 

  • Love, J., & Bryant, J. A. (2017). Biofuels and bioenergy. West Sussex, UK: Wiley.

    Book  Google Scholar 

  • Lyu, H., Dong, Z., Roobavannan, M., Kandasamy, J., & Pande, S. (2019). Rural unemployment pushes migrants to urban areas in jiangsu province, china. Palgrave Communications, 5, 92.

    Article  Google Scholar 

  • Mao, G., Zou, H., Chen, G., Du, H., & Zuo, J. (2015). Past, current and future of biomass energy research: A bibliometric analysis. Renewable and Sustainable Energy Reviews, 52, 1823–1833.

    Article  Google Scholar 

  • Oguntona, O. A., & Aigbavboa, C. O. (2017). Biomimetic reinvention of the construction industry: Energy management and sustainability. Energy Procedia, 142, 2721–2727.

    Article  Google Scholar 

  • Palocz-Andresen, M., Szalay, D., Gosztom, A., Sípos, L., & Taligás, T. (2019). International climate protection. Cham, Switzerland: Springer.

    Book  Google Scholar 

  • Pan, X., den Elzen, M., Höhne, N., Teng, F., & Wang, L. (2017). Exploring fair and ambitious mitigation contributions under the paris agreement goals. Environmental Science & Policy, 74, 49–56.

    Google Scholar 

  • Peck, M. E., & Wagman, D. (2017). Energy trading for fun and profit buy your neighbor’s rooftop solar power or sell your own on a blockchain. IEEE Spectrum, 54, 56–61.

    Article  Google Scholar 

  • Peimani, H. (2018). Financial barriers to development of renewable and green energy projects in Asia (ADBI Working Paper, Vol. 862). Tokyo: Asian Development Bank Institute.

    Google Scholar 

  • Perea-Moreno, M.-A., Samerón-Manzano, E., & Perea-Moreno, A.-J. (2019). Biomass as renewable energy: Worldwide research trends. Sustainability, 11, 863.

    Article  Google Scholar 

  • Population Reference Bureau. (2018). 2018 World Population Data Sheet. Washington, DC. Retrieved from https://www.prb.org/2018-world-population-data-sheet-with-focus-on-changing-age-structures/.

  • Radwan, G. A. N., & Osama, N. (2016). Biomimicry, an approach, for energy efficient building skin design. Procedia Environmental Sciences, 34, 178–189.

    Article  Google Scholar 

  • Ravi, S. K., & Tan, S. C. (2015). Progress and perspectives in exploiting photosynthetic biomolecules for solar energy harnessing. Energy & Environmental Science, 8, 2551–2573.

    Article  Google Scholar 

  • REN21. (2018). Renewables 2018 global status report. Paris, France: REN21.

    Google Scholar 

  • Salimijazi, F., Parra, E., & Barstow, B. (2019). Electrical energy storage with engineered biological systems. Journal of Biological Engineering, 13, 38.

    Article  Google Scholar 

  • Salingaros, N. A. (2000). Complexity and urban coherence. Journal of Urban Design, 5, 291–316.

    Article  Google Scholar 

  • Salingaros, N. A. (2003). Connecting the fractal city. In 5th Biennial of towns and town planners in Europe (pp. 78–101). PLANUM: Barcelona.

    Google Scholar 

  • Salingaros, N. A. (2018). Design should follow human biology and psychology. Journal of Biourbanism, VII, 25–36.

    Google Scholar 

  • Seidel, C., Jayaram, S., Kunkel, L., & Mackowski, A. (2017). Structural analysis of biologically inspired small wind turbine blades. International Journal of Mechanical and Materials Engineering, 12, 19.

    Article  Google Scholar 

  • Songstad, D. D., Lakshmanan, P., Chen, J., Gibbons, W., Hughes, S., & Nelson, R. (2009). Historical perspective of biofuels: Learning from the past to rediscover the future. In Vitro Cellular & Developmental Biology. Plant, 45, 189–192.

    Google Scholar 

  • Tripathi, N., Hills, C. D., Singh, R. S., & Atkinson, C. J. (2019). Biomass waste utilisation in low-carbon products: Harnessing a major potential resource. npj Climate and Atmospheric Science, 2, 35.

    Google Scholar 

  • Tun, M. M., Juchelkova, D., Win, M. M., Thu, A. M., & Puchor, T. (2019). Biomass energy: An overview of biomass sources, energy potential, and management in Southeast Asian countries. Resources, 8, 81.

    Article  Google Scholar 

  • UNEP. (2015). Converting waste agricultural biomass into a resource. Osaka/Shiga, Japan: United Nations Environment Programme Division of Technology, Industry and Economics International Environmental Technology Centre.

    Google Scholar 

  • Vadenbo, C., Tonini, D., Burg, V., Astrup, T. F., Thees, O., & Hellweg, S. (2018). Environmental optimization of biomass use for energy under alternative future energy scenarios for Switzerland. Biomass and Bioenergy, 119, 462–472.

    Article  Google Scholar 

  • Wang, T. (2019, November 28). Biomass energy—Power plant capacity worldwide 2018. https://www.statista.com/statistics/264637/world-biomass-energy-capacity/.

  • Wise, C., Pawlyn, M., & Braungart, M. (2013). Eco-engineering: Living in a materials world. Nature, 494, 172.

    Article  Google Scholar 

  • World Nuclear Association. (2019, November 20). Fukushima Daiichi accident. https://www.world-nuclear.org/information-library/safety-and-security/safety-of-plants/fukushima-accident.aspx.

  • Zhang, C., Wu, J., Zhou, Y., Cheng, M., & Long, C. (2018). Peer-to-peer energy trading in a microgrid. Applied Energy, 220, 1–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allam, Z. (2020). Revisiting Energy Policy and Planning in Future Living Cities. In: Biotechnology and Future Cities. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-43815-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43815-9_3

  • Published:

  • Publisher Name: Palgrave Macmillan, Cham

  • Print ISBN: 978-3-030-43814-2

  • Online ISBN: 978-3-030-43815-9

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics