Skip to main content

Particle Therapy for the Treatment of Brain Metastases

  • Chapter
  • First Online:
Radiotherapy in Managing Brain Metastases
  • 609 Accesses

Abstract

Proton beam therapy (PBT) has a dosimetric advantage compared with photon radiotherapy due to its ability to stop within tissues at a desired depth. PBT is best utilized in clinical scenarios where this increased conformality may lead to improved toxicities and/or facilitate treatments that would otherwise be unsafe with photons. For brain metastases in cases where stereotactic radiosurgery (SRS) is indicated, photon SRS is an excellent treatment modality and can often produce highly conformal radiation plans. Given that treatment with proton SRS is more complex and costlier than photon SRS, many question the role of PBT in the treatment of brain metastases. In this chapter, we will review the basics of PBT physics, biology, and dosimetry; we will examine the primary literature of proton-SRS for brain metastases; and we will discuss those patients with brain metastases for whom PBT may be helpful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASL:

Acute Severe Lymphopenia

CIT:

Carbon Ion Therapy

IMPT:

Intensity Modulated Proton Therapy

IMRT:

Intensity Modulated Radiation Therapy

LET:

Linear Energy Transfer

MGH:

Massachusetts General Hospital

PBS:

Pencil Beam Scanning

PBT:

Proton Beam Therapy

PSP:

Passively Scattered Protons

RBE:

Relative Biological Effectiveness

SOBP:

Spread-Out Bragg Peak

SRS:

Stereotactic Radiosurgery

VMAT:

Volumetric Modulated Arc Therapy

References

  1. Newhauser WD, Zhang R. The physics of proton therapy. Phys Med Biol. 2015;60(8):R155–209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Almond PR, Biggs PJ, Coursey BM, Hanson WF, Huq MS, Nath R, et al. AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys. 1999;26(9):1847–70.

    Article  PubMed  CAS  Google Scholar 

  3. Willers H, Allen A, Grosshans D, McMahon SJ, von Neubeck C, Wiese C, et al. Toward A variable RBE for proton beam therapy. Radiother Oncol. 2018;128(1):68–75.

    Article  PubMed  Google Scholar 

  4. Bortfeld T. An analytical approximation of the Bragg curve for therapeutic proton beams. Med Phys. 1997;24(12):2024–33.

    Article  PubMed  CAS  Google Scholar 

  5. Wilson RR. Radiological use of fast protons. Radiology. 1946;47(5):487–91.

    Article  PubMed  CAS  Google Scholar 

  6. Larsson B. Pre-therapeutic physical experiments with high energy protons. Br J Radiol. 1961;34:143–51.

    Article  PubMed  CAS  Google Scholar 

  7. Paganetti H. Proton therapy physics. Boca Raton: CRC Press; 2016.

    Book  Google Scholar 

  8. Trofimov A, Bortfeld T. Optimization of beam parameters and treatment planning for intensity modulated proton therapy. Technol Cancer Res Treat. 2003;2(5):437–44.

    Article  PubMed  Google Scholar 

  9. Madani I, Lomax AJ, Albertini F, Trnkova P, Weber DC. Dose-painting intensity-modulated proton therapy for intermediate- and high-risk meningioma. Radiat Oncol. 2015;10:72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Paganetti H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys Med Biol. 2012;57(11):R99–117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Giantsoudi D, Grassberger C, Craft D, Niemierko A, Trofimov A, Paganetti H. Linear energy transfer-guided optimization in intensity modulated proton therapy: feasibility study and clinical potential. Int J Radiat Oncol Biol Phys. 2013;87(1):216–22.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brownstein JM, Wisdom AJ, Castle KD, Mowery YM, Guida P, Lee CL, et al. Characterizing the potency and impact of carbon ion therapy in a primary mouse model of soft tissue sarcoma. Mol Cancer Ther. 2018;17(4):858–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Durante M, Loeffler JS. Charged particles in radiation oncology. Nat Rev Clin Oncol. 2009;7(1):37–43.

    Article  PubMed  Google Scholar 

  14. International Atomic Energy Agency. Dose reporting in ion beam therapy. Vienna: International Atomic Energy Agency; 2007.

    Google Scholar 

  15. Paganetti H, Niemierko A, Ancukiewicz M, Gerweck LE, Goitein M, Loeffler JS, et al. Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys. 2002;53(2):407–21.

    Article  PubMed  Google Scholar 

  16. Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol. 2014;59(22):R419–72.

    Article  PubMed  Google Scholar 

  17. Peeler CR, Mirkovic D, Titt U, Blanchard P, Gunther JR, Mahajan A, et al. Clinical evidence of variable proton biological effectiveness in pediatric patients treated for ependymoma. Radiother Oncol. 2016;121(3):395–401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hall EJ, Giaccia AJ. Radiobiology for the radiologist. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012.

    Google Scholar 

  19. Fontana AO, Augsburger MA, Grosse N, Guckenberger M, Lomax AJ, Sartori AA, et al. Differential DNA repair pathway choice in cancer cells after proton- and photon-irradiation. Radiother Oncol. 2015;116(3):374–80.

    Article  PubMed  CAS  Google Scholar 

  20. McMahon SJ, Paganetti H, Prise KM. LET-weighted doses effectively reduce biological variability in proton radiotherapy planning. Phys Med Biol. 2018;63(22):225009.

    Article  PubMed  CAS  Google Scholar 

  21. Yerramilli D, Bussière MR, Loeffler JS, Shih HA. Proton beam therapy (for CNS tumors). In: Chang EL, Brown PD, Lo SS, Sahgal A, Suh JH, editors. Adult CNS radiation oncology: principles and practice. Cham: Springer International Publishing; 2018. p. 709–22.

    Chapter  Google Scholar 

  22. Hua C, Yao W, Kidani T, Tomida K, Ozawa S, Nishimura T, et al. A robotic C-arm cone beam CT system for image-guided proton therapy: design and performance. Br J Radiol. 2017;90(1079):20170266.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bolsi A, Fogliata A, Cozzi L. Radiotherapy of small intracranial tumours with different advanced techniques using photon and proton beams: a treatment planning study. Radiother Oncol. 2003;68(1):1–14.

    Article  PubMed  Google Scholar 

  24. Freund D, Zhang R, Sanders M, Newhauser W. Predictive risk of radiation induced cerebral necrosis in pediatric brain cancer patients after VMAT versus proton therapy. Cancers. 2015;7(2):617–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Safai S, Bortfeld T, Engelsman M. Comparison between the lateral penumbra of a collimated double-scattered beam and uncollimated scanning beam in proton radiotherapy. Phys Med Biol. 2008;53(6):1729–50.

    Article  PubMed  Google Scholar 

  26. Winterhalter C, Lomax A, Oxley D, Weber DC, Safai S. A study of lateral fall-off (penumbra) optimisation for pencil beam scanning (PBS) proton therapy. Phys Med Biol. 2018;63(2):025022.

    Article  PubMed  CAS  Google Scholar 

  27. Weber DC, Chan AW, Bussiere MR, Harsh IVGR, Ancukiewicz M, Barker IIFG, et al. Proton beam radiosurgery for vestibular schwannoma: tumor control and cranial nerve toxicity. Neurosurgery. 2003;53(3):577–88.

    Article  PubMed  Google Scholar 

  28. Wattson DA, Tanguturi SK, Spiegel DY, Niemierko A, Biller BMK, Nachtigall LB, et al. Outcomes of proton therapy for patients with functional pituitary adenomas. Int J Radiat Oncol Biol Phys. 2014;90(3):532–9.

    Article  PubMed  Google Scholar 

  29. Petit JH, Biller BM, Yock TI, Swearingen B, Coen JJ, Chapman P, et al. Proton stereotactic radiotherapy for persistent adrenocorticotropin-producing adenomas. J Clin Endocrinol Metab. 2008;93(2):393–9.

    Article  PubMed  CAS  Google Scholar 

  30. Hattangadi-Gluth JA, Chapman PH, Kim D, Niemierko A, Bussière MR, Stringham A, et al. Single-fraction proton beam stereotactic radiosurgery for cerebral arteriovenous malformations. Int J Radiat Oncol Biol Phys. 2014;89(2):338–46.

    Article  PubMed  Google Scholar 

  31. Hattangadi JA, Chapman PH, Bussière MR, Niemierko A, Ogilvy CS, Rowell A, et al. Planned two-fraction proton beam stereotactic radiosurgery for high-risk inoperable cerebral arteriovenous malformations. Int J Radiat Oncol Biol Phys. 2012;83(2):533–41.

    Article  PubMed  Google Scholar 

  32. Shih HA, Chapman PH, Loeffler JS. Proton beam radiosurgery: clinical experience. In: Lozano AM, Gildenberg PL, Tasker RR, editors. Textbook of stereotactic and functional neurosurgery. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 1131–7.

    Chapter  Google Scholar 

  33. Atkins KM, Pashtan IM, Bussiere MR, Kang KH, Niemierko A, Daly JE, et al. Proton stereotactic radiosurgery for brain metastases: a single-institution analysis of 370 patients. Int J Radiat Oncol Biol Phys. 2018;101(4):820–9.

    Article  PubMed  Google Scholar 

  34. Particle Therapy Co-operative Group. Particle therapy facilities in clinical operation. 2018. Available from: https://www.ptcog.ch/index.php/facilities-in-operation.

  35. Durante M, Loeffler JS. Charged particles in radiation oncology. Nat Rev Clin Oncol. 2010;7(1):37–43.

    Article  PubMed  Google Scholar 

  36. Schulz-Ertner D, Nikoghosyan A, Hof H, Didinger B, Combs SE, Jakel O, et al. Carbon ion radiotherapy of skull base chondrosarcomas. Int J Radiat Oncol Biol Phys. 2007;67(1):171–7.

    Article  PubMed  Google Scholar 

  37. Ares C, Hug EB, Lomax AJ, Bolsi A, Timmermann B, Rutz HP, et al. Effectiveness and safety of spot scanning proton radiation therapy for chordomas and chondrosarcomas of the skull base: first long-term report. Int J Radiat Oncol Biol Phys. 2009;75(4):1111–8.

    Article  PubMed  Google Scholar 

  38. Mizoe JE. Review of carbon ion radiotherapy for skull base tumors (especially chordomas). Rep Pract Oncol Radiother. 2016;21(4):356–60.

    Article  PubMed  Google Scholar 

  39. Kirkpatrick JP, Laack NN, Halasz LM, Minniti G, Chan MD. Proton therapy for brain metastases: a question of value. Int J Radiat Oncol Biol Phys. 2018;101(4):830–2.

    Article  PubMed  Google Scholar 

  40. Fossati P, Vavassori A, Deantonio L, Ferrara E, Krengli M, Orecchia R. Review of photon and proton radiotherapy for skull base tumours. Rep Pract Oncol Radiother. 2016;21(4):336–55.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Adeberg S, Harrabi S, Bougatf N, Verma V, Windisch P, Bernhardt D, et al. Dosimetric comparison of proton radiation therapy, volumetric modulated arc therapy, and three-dimensional conformal radiotherapy based on intracranial tumor location. Cancers. 2018;10(11):401.

    Article  PubMed Central  CAS  Google Scholar 

  42. Sperduto PW, Yang TJ, Beal K, Pan H, Brown PD, Bangdiwala A, et al. Estimating survival in patients with lung cancer and brain metastases: an update of the graded prognostic assessment for lung cancer using molecular markers (Lung-molGPA). JAMA Oncol. 2017;3(6):827–31.

    Article  PubMed  Google Scholar 

  43. Sperduto PW, Kased N, Roberge D, Xu Z, Shanley R, Luo X, et al. Effect of tumor subtype on survival and the graded prognostic assessment for patients with breast cancer and brain metastases. Int J Radiat Oncol Biol Phys. 2012;82(5):2111–7.

    Article  PubMed  Google Scholar 

  44. Ganong WF. Review of medical physiology. 21st ed. Boston: McGraw-Hill; 2003.

    Google Scholar 

  45. Yovino S, Kleinberg L, Grossman SA, Narayanan M, Ford E. The etiology of treatment-related lymphopenia in patients with malignant gliomas: modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells. Cancer Investig. 2013;31(2):140–4.

    Article  CAS  Google Scholar 

  46. Petr J, Platzek I, Hofheinz F, Mutsaerts H, Asllani I, van Osch MJP, et al. Photon vs. proton radiochemotherapy: effects on brain tissue volume and perfusion. Radiother Oncol. 2018;128(1):121–7.

    Article  PubMed  Google Scholar 

  47. Huang J, DeWees TA, Badiyan SN, Speirs CK, Mullen DF, Fergus S, et al. Clinical and dosimetric predictors of acute severe lymphopenia during radiation therapy and concurrent temozolomide for high-grade glioma. Int J Radiat Oncol Biol Phys. 2015;92(5):1000–7.

    Article  PubMed  CAS  Google Scholar 

  48. Vaios EJ, Nahed BV, Muzikansky A, Fathi AT, Dietrich J. Bone marrow response as a potential biomarker of outcomes in glioblastoma patients. J Neurosurg. 2017;127(1):132–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Brownstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brownstein, J., Min, H.D., Bussiere, M., Shih, H.A. (2020). Particle Therapy for the Treatment of Brain Metastases. In: Yamada, Y., Chang, E., Fiveash, J., Knisely, J. (eds) Radiotherapy in Managing Brain Metastases. Springer, Cham. https://doi.org/10.1007/978-3-030-43740-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43740-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43739-8

  • Online ISBN: 978-3-030-43740-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics