Skip to main content

ALE and Space–Time Variational Multiscale Isogeometric Analysis of Wind Turbines and Turbomachinery

  • Chapter
  • First Online:
Parallel Algorithms in Computational Science and Engineering

Abstract

Many of the challenges encountered in computational analysis of wind turbines and turbomachinery are being addressed by the Arbitrary Lagrangian–Eulerian (ALE) and Space–Time (ST) Variational Multiscale (VMS) methods and isogeometric discretization. The computational challenges include turbulent rotational flows, complex geometries, moving boundaries and interfaces, such as the rotor motion, and the fluid–structure interaction (FSI), such as the FSI between the wind turbine blade and the air. The core computational methods are the ALE-VMS and ST-VMS methods. These are supplemented with special methods like the Slip Interface (SI) method and ST Isogeometric Analysis with NURBS basis functions in time. We describe the core and special methods and present, as examples of challenging computations performed, computational analysis of horizontal- and vertical-axis wind turbines and flow-driven string dynamics in pumps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Takizawa, T.E. Tezduyar, H. Mochizuki, H. Hattori, S. Mei, L. Pan, and K. Montel, “Space–time VMS method for flow computations with slip interfaces (ST-SI)”, Mathematical Models and Methods in Applied Sciences, 25 (2015) 2377–2406, https://doi.org/10.1142/S0218202515400126.

    MathSciNet  MATH  Google Scholar 

  2. Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan, “FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades”, Journal of Applied Mechanics, 83 (6) (2016) 061010.

    Google Scholar 

  3. T. Kanai, K. Takizawa, T.E. Tezduyar, K. Komiya, M. Kaneko, K. Hirota, M. Nohmi, T. Tsuneda, M. Kawai, and M. Isono, “Methods for computation of flow-driven string dynamics in a pump and residence time”, Mathematical Models and Methods in Applied Sciences, 29 (2019) 839–870, https://doi.org/10.1142/S021820251941001X.

    MathSciNet  MATH  Google Scholar 

  4. A. Korobenko, Y. Bazilevs, K. Takizawa, and T.E. Tezduyar, “Computer modeling of wind turbines: 1. ALE-VMS and ST-VMS aerodynamic and FSI analysis”, Archives of Computational Methods in Engineering, published online, https://doi.org/10.1007/s11831-018-9292-1, September 2018.

  5. Y. Bazilevs, V.M. Calo, T.J.R. Hughes, and Y. Zhang, “Isogeometric fluid–structure interaction: theory, algorithms, and computations”, Computational Mechanics, 43 (2008) 3–37.

    MathSciNet  MATH  Google Scholar 

  6. K. Takizawa and T.E. Tezduyar, “Multiscale space–time fluid–structure interaction techniques”, Computational Mechanics, 48 (2011) 247–267, https://doi.org/10.1007/s00466-011-0571-z.

    MathSciNet  MATH  Google Scholar 

  7. K. Takizawa, B. Henicke, A. Puntel, T. Spielman, and T.E. Tezduyar, “Space–time computational techniques for the aerodynamics of flapping wings”, Journal of Applied Mechanics, 79 (2012) 010903, https://doi.org/10.1115/1.4005073.

    MATH  Google Scholar 

  8. K. Takizawa, T.E. Tezduyar, Y. Otoguro, T. Terahara, T. Kuraishi, and H. Hattori, “Turbocharger flow computations with the Space–Time Isogeometric Analysis (ST-IGA)”, Computers & Fluids, 142 (2017) 15–20, https://doi.org/10.1016/j.compfluid.2016.02.021.

    MathSciNet  MATH  Google Scholar 

  9. Y. Otoguro, K. Takizawa, and T.E. Tezduyar, “Space–time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method”, Computers & Fluids, 158 (2017) 189–200, https://doi.org/10.1016/j.compfluid.2017.04.017.

    MathSciNet  MATH  Google Scholar 

  10. K. Takizawa and T.E. Tezduyar, “Computational methods for parachute fluid–structure interactions”, Archives of Computational Methods in Engineering, 19 (2012) 125–169, https://doi.org/10.1007/s11831-012-9070-4.

    MathSciNet  MATH  Google Scholar 

  11. Y. Bazilevs and T.J.R. Hughes, “Weak imposition of Dirichlet boundary conditions in fluid mechanics”, Computers and Fluids, 36 (2007) 12–26.

    MathSciNet  MATH  Google Scholar 

  12. Y. Bazilevs and T.J.R. Hughes, “NURBS-based isogeometric analysis for the computation of flows about rotating components”, Computational Mechanics, 43 (2008) 143–150.

    MATH  Google Scholar 

  13. T.E. Tezduyar, “Stabilized finite element formulations for incompressible flow computations”, Advances in Applied Mechanics, 28 (1992) 1–44, https://doi.org/10.1016/S0065-2156(08)70153-4.

    MathSciNet  MATH  Google Scholar 

  14. A.N. Brooks and T.J.R. Hughes, “Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations”, Computer Methods in Applied Mechanics and Engineering, 32 (1982) 199–259.

    MathSciNet  MATH  Google Scholar 

  15. T.J.R. Hughes, “Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods”, Computer Methods in Applied Mechanics and Engineering, 127 (1995) 387–401.

    MathSciNet  MATH  Google Scholar 

  16. Y. Bazilevs, V.M. Calo, J.A. Cottrell, T.J.R. Hughes, A. Reali, and G. Scovazzi, “Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows”, Computer Methods in Applied Mechanics and Engineering, 197 (2007) 173–201.

    MathSciNet  MATH  Google Scholar 

  17. T.E. Tezduyar and K. Takizawa, “Space–time computations in practical engineering applications: A summary of the 25-year history”, Computational Mechanics, 63 (2019) 747–753, https://doi.org/10.1007/s00466-018-1620-7.

    MATH  Google Scholar 

  18. K. Takizawa, D. Montes, M. Fritze, S. McIntyre, J. Boben, and T.E. Tezduyar, “Methods for FSI modeling of spacecraft parachute dynamics and cover separation”, Mathematical Models and Methods in Applied Sciences, 23 (2013) 307–338, https://doi.org/10.1142/S0218202513400058.

    MathSciNet  MATH  Google Scholar 

  19. K. Takizawa, T.E. Tezduyar, and R. Kolesar, “FSI modeling of the Orion spacecraft drogue parachutes”, Computational Mechanics, 55 (2015) 1167–1179, https://doi.org/10.1007/s00466-014-1108-z.

    MATH  Google Scholar 

  20. K. Takizawa, B. Henicke, D. Montes, T.E. Tezduyar, M.-C. Hsu, and Y. Bazilevs, “Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics”, Computational Mechanics, 48 (2011) 647–657, https://doi.org/10.1007/s00466-011-0614-5.

    MATH  Google Scholar 

  21. K. Takizawa, “Computational engineering analysis with the new-generation space–time methods”, Computational Mechanics, 54 (2014) 193–211, https://doi.org/10.1007/s00466-014-0999-z.

    MathSciNet  Google Scholar 

  22. K. Takizawa, B. Henicke, A. Puntel, N. Kostov, and T.E. Tezduyar, “Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust”, Computational Mechanics, 50 (2012) 743–760, https://doi.org/10.1007/s00466-012-0759-x.

    MATH  Google Scholar 

  23. K. Takizawa, T.E. Tezduyar, and N. Kostov, “Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV”, Computational Mechanics, 54 (2014) 213–233, https://doi.org/10.1007/s00466-014-0980-x.

    MathSciNet  Google Scholar 

  24. K. Takizawa, T.E. Tezduyar, and A. Buscher, “Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping”, Computational Mechanics, 55 (2015) 1131–1141, https://doi.org/10.1007/s00466-014-1095-0.

    Google Scholar 

  25. K. Takizawa, Y. Bazilevs, T.E. Tezduyar, M.-C. Hsu, O. Øiseth, K.M. Mathisen, N. Kostov, and S. McIntyre, “Engineering analysis and design with ALE-VMS and space–time methods”, Archives of Computational Methods in Engineering, 21 (2014) 481–508, https://doi.org/10.1007/s11831-014-9113-0.

    MathSciNet  MATH  Google Scholar 

  26. K. Takizawa, K. Schjodt, A. Puntel, N. Kostov, and T.E. Tezduyar, “Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms”, Computational Mechanics, 51 (2013) 1061–1073, https://doi.org/10.1007/s00466-012-0790-y.

    MathSciNet  MATH  Google Scholar 

  27. K. Takizawa, T.E. Tezduyar, H. Uchikawa, T. Terahara, T. Sasaki, and A. Yoshida, “Mesh refinement influence and cardiac-cycle flow periodicity in aorta flow analysis with isogeometric discretization”, Computers & Fluids, 179 (2019) 790–798, https://doi.org/10.1016/j.compfluid.2018.05.025.

    MathSciNet  MATH  Google Scholar 

  28. K. Takizawa, T.E. Tezduyar, T. Terahara, and T. Sasaki, “Heart valve flow computation with the integrated Space–Time VMS, Slip Interface, Topology Change and Isogeometric Discretization methods”, Computers & Fluids, 158 (2017) 176–188, https://doi.org/10.1016/j.compfluid.2016.11.012.

    MathSciNet  MATH  Google Scholar 

  29. K. Takizawa, T.E. Tezduyar, and T. Kuraishi, “Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires”, Mathematical Models and Methods in Applied Sciences, 25 (2015) 2227–2255, https://doi.org/10.1142/S0218202515400072.

    MathSciNet  MATH  Google Scholar 

  30. K. Takizawa, T.E. Tezduyar, T. Kuraishi, S. Tabata, and H. Takagi, “Computational thermo-fluid analysis of a disk brake”, Computational Mechanics, 57 (2016) 965–977, https://doi.org/10.1007/s00466-016-1272-4.

    MathSciNet  MATH  Google Scholar 

  31. Y. Otoguro, K. Takizawa, T.E. Tezduyar, K. Nagaoka, and S. Mei, “Turbocharger turbine and exhaust manifold flow computation with the Space–Time Variational Multiscale Method and Isogeometric Analysis”, Computers & Fluids, 179 (2019) 764–776, https://doi.org/10.1016/j.compfluid.2018.05.019.

    MathSciNet  MATH  Google Scholar 

  32. T. Kuraishi, K. Takizawa, and T.E. Tezduyar, “Tire aerodynamics with actual tire geometry, road contact and tire deformation”, Computational Mechanics, 63 (2019) 1165–1185, https://doi.org/10.1007/s00466-018-1642-1.

    MathSciNet  MATH  Google Scholar 

  33. T. Kuraishi, K. Takizawa, and T.E. Tezduyar, “Space–Time Isogeometric flow analysis with built-in Reynolds-equation limit”, Mathematical Models and Methods in Applied Sciences, 29 (2019) 871–904, https://doi.org/10.1142/S0218202519410021.

    MathSciNet  MATH  Google Scholar 

  34. K. Takizawa, T.E. Tezduyar, and T. Terahara, “Ram-air parachute structural and fluid mechanics computations with the space–time isogeometric analysis (ST-IGA)”, Computers & Fluids, 141 (2016) 191–200, https://doi.org/10.1016/j.compfluid.2016.05.027.

    MathSciNet  MATH  Google Scholar 

  35. K. Takizawa, T.E. Tezduyar, and T. Kanai, “Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity”, Mathematical Models and Methods in Applied Sciences, 27 (2017) 771–806, https://doi.org/10.1142/S0218202517500166.

    MathSciNet  MATH  Google Scholar 

  36. T.J.R. Hughes, W.K. Liu, and T.K. Zimmermann, “Lagrangian–Eulerian finite element formulation for incompressible viscous flows”, Computer Methods in Applied Mechanics and Engineering, 29 (1981) 329–349.

    MathSciNet  MATH  Google Scholar 

  37. V. Kalro and T.E. Tezduyar, “A parallel 3D computational method for fluid–structure interactions in parachute systems”, Computer Methods in Applied Mechanics and Engineering, 190 (2000) 321–332, https://doi.org/10.1016/S0045-7825(00)00204-8.

    MATH  Google Scholar 

  38. Y. Bazilevs, M.-C. Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, and T.E. Tezduyar, “3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics”, International Journal for Numerical Methods in Fluids, 65 (2011) 207–235, https://doi.org/10.1002/fld.2400.

    MATH  Google Scholar 

  39. J. Yan, A. Korobenko, X. Deng, and Y. Bazilevs, “Computational free-surface fluid–structure interaction with application to floating offshore wind turbines”, Computers and Fluids, 141 (2016) 155–174, https://doi.org/10.1016/j.compfluid.2016.03.008.

    MathSciNet  MATH  Google Scholar 

  40. Y. Bazilevs, V.M. Calo, Y. Zhang, and T.J.R. Hughes, “Isogeometric fluid–structure interaction analysis with applications to arterial blood flow”, Computational Mechanics, 38 (2006) 310–322.

    MathSciNet  MATH  Google Scholar 

  41. M.-C. Hsu and Y. Bazilevs, “Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations”, Finite Elements in Analysis and Design, 47 (2011) 593–599.

    MathSciNet  Google Scholar 

  42. M.-C. Hsu, D. Kamensky, F. Xu, J. Kiendl, C. Wang, M.C.H. Wu, J. Mineroff, A. Reali, Y. Bazilevs, and M.S. Sacks, “Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models”, Computational Mechanics, 55 (2015) 1211–1225, https://doi.org/10.1007/s00466-015-1166-x.

    MATH  Google Scholar 

  43. D. Kamensky, M.-C. Hsu, D. Schillinger, J.A. Evans, A. Aggarwal, Y. Bazilevs, M.S. Sacks, and T.J.R. Hughes, “An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves”, Computer Methods in Applied Mechanics and Engineering, 284 (2015) 1005–1053.

    MathSciNet  MATH  Google Scholar 

  44. I. Akkerman, J. Dunaway, J. Kvandal, J. Spinks, and Y. Bazilevs, “Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS”, Computational Mechanics, 50 (2012) 719–727.

    Google Scholar 

  45. M.C.H. Wu, D. Kamensky, C. Wang, A.J. Herrema, F. Xu, M.S. Pigazzini, A. Verma, A.L. Marsden, Y. Bazilevs, and M.-C. Hsu, “Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear”, Computer Methods in Applied Mechanics and Engineering, 316 (2017) 668–693.

    MathSciNet  MATH  Google Scholar 

  46. J. Yan, X. Deng, A. Korobenko, and Y. Bazilevs, “Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines”, Computers and Fluids, 158 (2017) 157–166, https://doi.org/10.1016/j.compfluid.2016.06.016.

    MathSciNet  MATH  Google Scholar 

  47. A. Castorrini, A. Corsini, F. Rispoli, K. Takizawa, and T.E. Tezduyar, “A stabilized ALE method for computational fluid–structure interaction analysis of passive morphing in turbomachinery”, Mathematical Models and Methods in Applied Sciences, 29 (2019) 967–994, https://doi.org/10.1142/S0218202519410057.

    MathSciNet  MATH  Google Scholar 

  48. J. Yan, B. Augier, A. Korobenko, J. Czarnowski, G. Ketterman, and Y. Bazilevs, “FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration”, Computers and Fluids, 141 (2016) 201–211, https://doi.org/10.1016/j.compfluid.2015.07.013.

    MathSciNet  MATH  Google Scholar 

  49. T.A. Helgedagsrud, I. Akkerman, Y. Bazilevs, K.M. Mathisen, and O.A. Oiseth, “Isogeometric modeling and experimental investigation of moving-domain bridge aerodynamics”, ASCE Journal of Engineering Mechanics, 145 (2019) 04019026.

    Google Scholar 

  50. J. Yan, A. Korobenko, A.E. Tejada-Martinez, R. Golshan, and Y. Bazilevs, “A new variational multiscale formulation for stratified incompressible turbulent flows”, Computers & Fluids, 158 (2017) 150–156, https://doi.org/10.1016/j.compfluid.2016.12.004.

    MathSciNet  MATH  Google Scholar 

  51. F. Xu, G. Moutsanidis, D. Kamensky, M.-C. Hsu, M. Murugan, A. Ghoshal, and Y. Bazilevs, “Compressible flows on moving domains: Stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling”, Computers & Fluids, 158 (2017) 201–220, https://doi.org/10.1016/j.compfluid.2017.02.006.

    MathSciNet  MATH  Google Scholar 

  52. T.M. van Opstal, J. Yan, C. Coley, J.A. Evans, T. Kvamsdal, and Y. Bazilevs, “Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows”, Computer Methods in Applied Mechanics and Engineering, 316 (2017) 859–879, https://doi.org/10.1016/j.cma.2016.10.015.

    MathSciNet  MATH  Google Scholar 

  53. Y. Bazilevs, K. Takizawa, and T.E. Tezduyar, Computational Fluid–Structure Interaction: Methods and Applications. Wiley, February 2013, ISBN 978-0470978771.

    Google Scholar 

  54. T.E. Tezduyar, “Computation of moving boundaries and interfaces and stabilization parameters”, International Journal for Numerical Methods in Fluids, 43 (2003) 555–575, https://doi.org/10.1002/fld.505.

    MathSciNet  MATH  Google Scholar 

  55. T.E. Tezduyar and S. Sathe, “Modeling of fluid–structure interactions with the space–time finite elements: Solution techniques”, International Journal for Numerical Methods in Fluids, 54 (2007) 855–900, https://doi.org/10.1002/fld.1430.

    MathSciNet  MATH  Google Scholar 

  56. M.-C. Hsu, Y. Bazilevs, V.M. Calo, T.E. Tezduyar, and T.J.R. Hughes, “Improving stability of stabilized and multiscale formulations in flow simulations at small time steps”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 828–840, https://doi.org/10.1016/j.cma.2009.06.019.

    MathSciNet  MATH  Google Scholar 

  57. K. Takizawa, T.E. Tezduyar, S. McIntyre, N. Kostov, R. Kolesar, and C. Habluetzel, “Space–time VMS computation of wind-turbine rotor and tower aerodynamics”, Computational Mechanics, 53 (2014) 1–15, https://doi.org/10.1007/s00466-013-0888-x.

    MATH  Google Scholar 

  58. K. Takizawa, T.E. Tezduyar, and Y. Otoguro, “Stabilization and discontinuity-capturing parameters for space–time flow computations with finite element and isogeometric discretizations”, Computational Mechanics, 62 (2018) 1169–1186, https://doi.org/10.1007/s00466-018-1557-x.

    MathSciNet  MATH  Google Scholar 

  59. T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement”, Computer Methods in Applied Mechanics and Engineering, 194 (2005) 4135–4195.

    MathSciNet  MATH  Google Scholar 

  60. K. Takizawa and T.E. Tezduyar, “Space–time computation techniques with continuous representation in time (ST-C)”, Computational Mechanics, 53 (2014) 91–99, https://doi.org/10.1007/s00466-013-0895-y.

    MathSciNet  Google Scholar 

  61. T. Kanai, K. Takizawa, T.E. Tezduyar, T. Tanaka, and A. Hartmann, “Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization”, Computational Mechanics, 63 (2019) 301–321, https://doi.org/10.1007/s00466-018-1595-4.

    MathSciNet  MATH  Google Scholar 

  62. T. Sasaki, K. Takizawa, and T.E. Tezduyar, “Medical-image-based aorta modeling with zero-stress-state estimation”, Computational Mechanics, 64 (2019) 249–271, https://doi.org/10.1007/s00466-019-01669-4.

    MathSciNet  MATH  Google Scholar 

  63. K. Takizawa, T.E. Tezduyar, and T. Sasaki, “Isogeometric hyperelastic shell analysis with out-of-plane deformation mapping”, Computational Mechanics, 63 (2019) 681–700, https://doi.org/10.1007/s00466-018-1616-3.

    MathSciNet  MATH  Google Scholar 

  64. Y. Otoguro, K. Takizawa, and T.E. Tezduyar, “A general-purpose NURBS mesh generation method for complex geometries”, in T.E. Tezduyar, editor, Frontiers in Computational Fluid–Structure Interaction and Flow Simulation: Research from Lead Investigators under Forty – 2018, Modeling and Simulation in Science, Engineering and Technology, 399–434, Springer, 2018, ISBN 978-3-319-96468-3, https://doi.org/10.1007/978-3-319-96469-0_10.

  65. K. Takizawa, T.E. Tezduyar, S. Asada, and T. Kuraishi, “Space–time method for flow computations with slip interfaces and topology changes (ST-SI-TC)”, Computers & Fluids, 141 (2016) 124–134, https://doi.org/10.1016/j.compfluid.2016.05.006.

    MathSciNet  MATH  Google Scholar 

  66. Y. Bazilevs, J.R. Gohean, T.J.R. Hughes, R.D. Moser, and Y. Zhang, “Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device”, Computer Methods in Applied Mechanics and Engineering, 198 (2009) 3534–3550.

    MathSciNet  MATH  Google Scholar 

  67. M. Esmaily-Moghadam, Y. Bazilevs, T.-Y. Hsia, I.E. Vignon-Clementel, and A.L. Marsden, “A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations”, Computational Mechanics, 48 (2011) 277–291.

    MathSciNet  MATH  Google Scholar 

  68. C.A. Taylor, T.J.R. Hughes, and C.K. Zarins, “Finite element modeling of blood flow in arteries”, Computer Methods in Applied Mechanics and Engineering, 158 (1998) 155–196.

    MathSciNet  MATH  Google Scholar 

  69. T.E. Tezduyar and M. Senga, “Stabilization and shock-capturing parameters in SUPG formulation of compressible flows”, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 1621–1632, https://doi.org/10.1016/j.cma.2005.05.032.

    MathSciNet  MATH  Google Scholar 

  70. Y. Bazilevs, V.M. Calo, T.E. Tezduyar, and T.J.R. Hughes, “YZβ discontinuity-capturing for advection-dominated processes with application to arterial drug delivery”, International Journal for Numerical Methods in Fluids, 54 (2007) 593–608, https://doi.org/10.1002/fld.1484.

    MathSciNet  MATH  Google Scholar 

  71. S.B. Raknes, X. Deng, Y. Bazilevs, D.J. Benson, K.M. Mathisen, and T. Kvamsdal, “Isogeometric rotation-free bending-stabilized cables: Statics, dynamics, bending strips and coupling with shells”, Computer Methods in Applied Mechanics and Engineering, 263 (2013) 127–143.

    MathSciNet  MATH  Google Scholar 

  72. K. Takizawa, T. Spielman, and T.E. Tezduyar, “Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters”, Computational Mechanics, 48 (2011) 345–364, https://doi.org/10.1007/s00466-011-0590-9.

    MATH  Google Scholar 

  73. C.C. Long, M. Esmaily-Moghadam, A.L. Marsden, and Y. Bazilevs, “Computation of residence time in the simulation of pulsatile ventricular assist devices”, Computational Mechanics, 54 (2014) 911–919, https://doi.org/10.1007/s00466-013-0931-y.

    MathSciNet  MATH  Google Scholar 

  74. T.E. Tezduyar, M. Behr, S. Mittal, and A.A. Johnson, “Computation of unsteady incompressible flows with the finite element methods: Space–time formulations, iterative strategies and massively parallel implementations”, in New Methods in Transient Analysis, PVP-Vol.246/AMD-Vol.143, ASME, New York, (1992) 7–24.

    Google Scholar 

  75. T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, and S. Mittal, “Parallel finite-element computation of 3D flows”, Computer, 26 (10) (1993) 27–36, https://doi.org/10.1109/2.237441.

    MATH  Google Scholar 

  76. “Life tower”, http://cosmosunfarm.co.jp/lifetower.html.

  77. Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan, “Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines”, International Journal for Numerical Methods in Engineering, 102 (2015) 766–783, https://doi.org/10.1002/nme.4738.

    MathSciNet  MATH  Google Scholar 

  78. M.-C. Hsu, C. Wang, A.J. Herrema, D. Schillinger, A. Ghoshal, and Y. Bazilevs, “An interactive geometry modeling and parametric design platform for isogeometric analysis”, Computers and Mathematics with Applications, 70 (2015) 1481–1500.

    MathSciNet  Google Scholar 

  79. B.R. Resor, “Definition of a 5MW/61.5m wind turbine blade reference model”, Technical Report SAND2013-2569, Sandia National Laboratories, Albuquerque, NM, 2013.

    Google Scholar 

  80. Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wüchner, and K.-U. Bletzinger, “3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades”, International Journal for Numerical Methods in Fluids, 65 (2011) 236–253.

    MATH  Google Scholar 

  81. J.F. Manwell, J.G. McGowan, and A.L. Rogers, Wind Energy Explained: Theory, Design and Application. John Wiley & Sons, 2009.

    Google Scholar 

Download references

Acknowledgements

This work was supported (second author) in part by Grant-in-Aid for Challenging Exploratory Research 16K13779 from Japan Society for the Promotion of Science; Grant-in-Aid for Scientific Research (S) 26220002 from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT); Council for Science, Technology and Innovation (CSTI), Cross-Ministerial Strategic Innovation Promotion Program (SIP), “Innovative Combustion Technology” (Funding agency: JST); and Rice–Waseda research agreement. It was also supported in part by Grant-in-Aid for Early-Career Scientists 19K20287 (fifth author). The mathematical model and computational method parts of the work were also supported (third author) in part by ARO Grant W911NF-17-1-0046, ARO DURIP Grant W911NF-18-1-0234, and Top Global University Project of Waseda University. The first author was partially supported by NSF Grant 1854436, and the fourth author was partially supported by NIH/NHLBI Grants R01HL129077 and R01HL142504.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Bazilevs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bazilevs, Y. et al. (2020). ALE and Space–Time Variational Multiscale Isogeometric Analysis of Wind Turbines and Turbomachinery. In: Grama, A., Sameh, A. (eds) Parallel Algorithms in Computational Science and Engineering. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-43736-7_7

Download citation

Publish with us

Policies and ethics