Advertisement

Parallel Fast Time-Domain Integral-Equation Methods for Transient Electromagnetic Analysis

Chapter
  • 391 Downloads
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

Transient and broadband electromagnetic scattering and radiation phenomena involving perfect electrically conducting (PEC) and dielectric objects can be efficiently simulated using marching-on-in-time (MOT)-based time-domain (TD) integral-equation (IE) methods. This chapter reviews recent advances in the development of highly parallel, fast, accurate, stable, and rapidly converging TDIE solvers. These solvers apply to very large-scale problems within the realm of scattering analysis, antenna/RF device modeling, electromagnetic compatibility modeling, optical imaging, and biomedical applications, to name but a few.

References

  1. 1.
    Shanker, B., et al. (2000). Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation. IEEE Trans. Antennas Propag. 48(7): 1064-1074.Google Scholar
  2. 2.
    Chew, W.C., et al. (2001). Fast and efficient algorithms in computational electromagnetics, Artech House, Inc.Google Scholar
  3. 3.
    Michielssen, E., et al. (2006). Fast time domain integral equation based electromagnetic analysis: A maturing technology. Proc. Eur. Conf. Comput. Fluid Dyn.Google Scholar
  4. 4.
    Bagci, H., et al. (2007). Fast and rigorous analysis of EMC/EMI phenomena on electrically large and complex cable-loaded structures. IEEE Trans. Electromagn. Compat. 49(2): 361-381.Google Scholar
  5. 5.
    Bagci, H., et al. (2009). A fast Stroud-based collocation method for statistically characterizing EMI/EMC phenomena on complex platforms. IEEE Trans. Electromagn. Compat. 51(2): 301-311.Google Scholar
  6. 6.
    Chen, N.-W., B. Shanker, and E. Michielssen (2003). Integral-equation-based analysis of transient scattering from periodic perfectly conducting structures. IEE P-Microw. Anten. P. 150(2): 120-124.Google Scholar
  7. 7.
    Pantoja, M., et al. (2010). TDIE modeling of carbon nanotube dipoles at microwave and terahertz bands. IEEE Antennas Wireless Propag. Lett. 9: 32-35.Google Scholar
  8. 8.
    Ergin, A.A., B. Shanker, and E. Michielssen (1999). The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena. IEEE Antennas Propag. Mag. 41(4): 39-52.Google Scholar
  9. 9.
    Yilmaz, A.E., J.-M. Jin, and E. Michielssen (2004). Time domain adaptive integral method for surface integral equations. IEEE Trans. Antennas Propag. 52(10): 2692-2708.Google Scholar
  10. 10.
    Meng, J., et al. (2010). A multilevel Cartesian non-uniform grid time domain algorithm. J. Comput. Phys. 229(22): 8430-8444.Google Scholar
  11. 11.
    Vikram, M. and B. Shanker (2007). Fast evaluation of time domain fields in sub-wavelength source/observer distributions using accelerated Cartesian expansions (ACE). J. Comput. Phys. 227(2): 1007-1023.Google Scholar
  12. 12.
    Shanker, B. and H. Huang (2007). Accelerated Cartesian expansions–A fast method for computing of potentials of the form R− ν for all real ν. J. Comput. Phys. 226(1): 732-753.Google Scholar
  13. 13.
    Cheng, G.S. and R.S. Chen (2016). Fast analysis of transient electromagnetic scattering using the Taylor series expansion-enhanced time-domain integral equation solver. IEEE Trans. Antennas Propag. 64(9): 3943-3952.Google Scholar
  14. 14.
    Zhou, Z. and J.S. Tyo (2005). An adaptive time-domain integral equation method for transient analysis of wire scatterer. IEEE Antennas Wireless Propag. Lett. 4: 147-150.Google Scholar
  15. 15.
    Kaur, G. and A.E. Ylmaz (2015). Envelope-tracking adaptive integral method for band-pass transient scattering analysis. IEEE Trans. Antennas Propag. 63(5): 2215-2227.Google Scholar
  16. 16.
    Walker, S.P. and M.J. Vartiainen (1998). Hybridization of curvilinear time-domain integral equation and time-domain optical methods for electromagnetic scattering analysis. IEEE Trans. Antennas Propag. 46(3): 318-324.Google Scholar
  17. 17.
    Kobidze, G., B. Shanker, and E. Michielssen (2003). Hybrid PO-PWTD scheme for analyzing of scattering from electrically large PEC objects. Proc. IEEE Int. Symp. AP-S/URSI. 3: 547-550.Google Scholar
  18. 18.
    Meng, R., et al. (2008). Coupled TDIE-PO method for transient scattering from electrically large conducting objects. Electron. Lett. 44(4): 258-260.Google Scholar
  19. 19.
    Luo, W., et al. (2011). Hybrid TDIE-TDPO method for studying on transient responses of some wire and surface structures illuminated by an electromagnetic pulse. Prog. Electromagn. Res. 116: 203-219.Google Scholar
  20. 20.
    Luo, W., et al. (2012). Investigation on time-and frequency-domain responses of some complex composite structures in the presence of high-power electromagnetic pulses. IEEE Trans. Electromagn. Compat. 54(5): 1006-1016.Google Scholar
  21. 21.
    Al-Jarro, A., M. Cheeseman, and H. Bağcı (2012). Distributed-memory parallelization of an explicit time-domain volume integral equation solver on Blue Gene/P. Appl. Comp. Electromag. Soc. J. 27(2): 132-144.Google Scholar
  22. 22.
    Liu, Y., V. Lomakin, and E. Michielssen (2012). Graphics processing unit-accelerated implementation of the plane wave time domain algorithm. 28th Ann. Rev. Prog. Appl. Computat. Electromagn.Google Scholar
  23. 23.
    Feki, S., et al. (2014). Porting an explicit time-domain volume-integral-equation solver on GPUs with OpenACC. IEEE Antennas Propag. Mag. 56(2): 265-277.Google Scholar
  24. 24.
    Liu, Y., et al. (2014). Graphics processing unit implementation of multilevel plane-wave time-domain algorithm. IEEE Antennas Wireless Propag. Lett. 13: 1671-1675.Google Scholar
  25. 25.
    Liu, Y., et al. (2016). A scalable parallel PWTD-accelerated SIE solver for analyzing transient scattering from electrically large objects. IEEE Trans. Antennas Propag. 64(2): 663-674.Google Scholar
  26. 26.
    Liu, Y., et al. (2016). Parallel PWTD-accelerated explicit solution of the time-domain electric field volume integral equation. IEEE Trans. Antennas Propag. 64(6): 2378-2388.Google Scholar
  27. 27.
    Aygun, K., et al. (2003). A parallel PWTD accelerated time marching scheme for analysis of EMC/EMI problems. Proc. IEEE Int. Symp. Electromagn. Compat.Google Scholar
  28. 28.
    Liu, N., et al. (2004). The parallel plane wave time domain algorithm-accelerated marching on in time solvers for large-scale electromagnetic scattering problems. Proc. IEEE Int. Symp. AP-S/URSI, IEEE.Google Scholar
  29. 29.
    Song, J., C.-C. Lu, and W.C. Chew (1997). Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans. Antennas Propag. 45(10): 1488-1493.Google Scholar
  30. 30.
    Fostier, J. and F. Olyslager (2008). Provably scalable parallel multilevel fast multipole algorithm. Electron. Lett. 44(19): 1111-1113.Google Scholar
  31. 31.
    Ergul, O. and L. Gurel (2009). A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm. IEEE Trans. Antennas Propag. 57(6): 1740-1750.Google Scholar
  32. 32.
    Fostier, J. and F. Olyslager (2010). An open-source implementation for full-wave 2D scattering by million-wavelength-size objects. IEEE Antennas Propag. Mag. 52(5): 23-34.Google Scholar
  33. 33.
    Ergul, O. and L. Gurel (2011). Rigorous solutions of electromagnetic problems involving hundreds of millions of unknowns. IEEE Antennas Propag. Mag. 53(1): 18-27.Google Scholar
  34. 34.
    Melapudi, V., et al. (2011). A scalable parallel wideband MLFMA for efficient electromagnetic simulations on large scale clusters. IEEE Trans. Antennas Propag. 59(7): 2565-2577.Google Scholar
  35. 35.
    Rao, S., D. Wilton, and A. Glisson (1982). Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 30(3): 409-418.Google Scholar
  36. 36.
    Manara, G., A. Monorchio, and R. Reggiannini (1997). A space-time discretization criterion for a stable time-marching solution of the electric field integral equation. IEEE Trans. Antennas Propag. 45(3): 527-532.Google Scholar
  37. 37.
    Mieras, H. and C. Bennett (1982). Space-time integral equation approach to dielectric targets. IEEE Trans. Antennas Propag. 30(1): 2-9.Google Scholar
  38. 38.
    Shanker, B., A.A. Ergin, and E. Michielssen (2002). Plane-wave-time-domain-enhanced marching-on-in-time scheme for analyzing scattering from homogeneous dielectric structures. J. Opt. Soc. Am. A 19(4): 716-726.Google Scholar
  39. 39.
    Vechinski, D.A., S.M. Rao, and T.K. Sarkar (1994). Transient scattering from three-dimensional arbitrarily shaped dielectric bodies. J. Opt. Soc. Am. A 11(4): 1458-1470.Google Scholar
  40. 40.
    Pisharody, G. and D.S. Weile (2006). Electromagnetic scattering from homogeneous dielectric bodies using time-domain integral equations. IEEE Trans. Antennas Propag. 54(2): 687-697.Google Scholar
  41. 41.
    Shanker, B., et al. (2009). Time domain integral equation analysis of scattering from composite bodies via exact evaluation of radiation fields. IEEE Trans. Antennas Propag. 57(5): 1506-1520.Google Scholar
  42. 42.
    Wang, X., et al. (2008). A finite difference delay modeling approach to the discretization of the time domain integral equations of electromagnetics. IEEE Trans. Antennas Propag. 56(8): 2442-2452.Google Scholar
  43. 43.
    Wang, X. and D.S. Weile (2010). Electromagnetic scattering from dispersive dielectric scatterers using the finite difference delay modeling method. IEEE Trans. Antennas Propag. 58(5): 1720-1730.Google Scholar
  44. 44.
    Uysal, I.E., H. Arda Ülkü, and H. Bağci (2016). Transient analysis of electromagnetic wave interactions on plasmonic nanostructures using a surface integral equation solver. J. Acoust. Soc. Am. 33(9): 1747-1759.Google Scholar
  45. 45.
    Uysal, I.E., H.A. Ülkü, and H. Bağcı (2015). MOT solution of the PMCHWT equation for analyzing transient scattering from conductive dielectrics. IEEE Antennas Wireless Propag. Lett. 14: 507-510.Google Scholar
  46. 46.
    Zhao, Y., et al. (2018). A time-domain thin dielectric sheet (TD-TDS) integral equation method for scattering characteristics of tunable graphene. IEEE Trans. Antennas Propag. 66(3): 1366-1373.Google Scholar
  47. 47.
    Gres, N.T., et al. (2001). Volume-integral-equation-based analysis of transient electromagnetic scattering from three-dimensional inhomogeneous dielectric objects. Radio Sci. 36(3): 379-386.Google Scholar
  48. 48.
    Shanker, B., K. Aygun, and E. Michielssen (2004). Fast analysis of transient scattering from lossy inhomogeneous dielectric bodies. Radio Sci. 39(2).Google Scholar
  49. 49.
    Kobidze, G., et al. (2005). A fast time domain integral equation based scheme for analyzing scattering from dispersive objects. IEEE Trans. Antennas Propag. 53(3): 1215-1226.Google Scholar
  50. 50.
    Sayed, S.B., H.A. Ulku, and H. Bagci (2016). Transient analysis of scattering from ferromagnetic objects using Landau-Lifshitz-Gilbert and volume integral equations. 2016 IEEE International Symposium on Antennas and Propagation (APSURSI).Google Scholar
  51. 51.
    Yilmaz, A.E., et al. (2002). Fast analysis of transient scattering in lossy media. IEEE Antennas Wireless Propag. Lett. 1(1): 14-17.Google Scholar
  52. 52.
    Bagci, H., et al. (2005). Fast solution of mixed-potential time-domain integral equations for half-space environments. IEEE Trans. Geosci. Remote Sens. 43(2): 269-279.Google Scholar
  53. 53.
    Ghaffari-Miab, M., et al. (2014). Time-domain integral equation solver for planar circuits over layered media using finite difference generated Green's functions. IEEE Trans. Antennas Propag. 62(6): 3076-3090.Google Scholar
  54. 54.
    Karami, H., et al. (2014). Efficient analysis of shielding effectiveness of metallic rectangular enclosures using unconditionally stable time-domain integral equations. IEEE Trans. Electromagn. Compat. 56(6): 1412-1419.Google Scholar
  55. 55.
    Gao, J. and B. Shanker (2007). Time domain Weyl's identity and the causality trick based formulation of the time domain periodic Green's function. IEEE Trans. Antennas Propag. 55(6): 1656-1666.Google Scholar
  56. 56.
    Lu, M., et al. (2004). Fast time domain integral equation solvers for analyzing two-dimensional scattering phenomena; Part I: temporal acceleration. Electromagnetics 24(6): 425-449.Google Scholar
  57. 57.
    Ghaffari-Miab, M., S.M.H. Haddad, and R. Faraji-Dana (2009). A new fast and accurate time domain formulation of the method of moment (TD-MoM) for thin-wire antennas. Asia Pac. Microw. Conf.: 72-75.Google Scholar
  58. 58.
    Hu, J.-L. and C.H. Chan (1999). Improved temporal basis function for time domain electric field integral equation method. Electron. Lett. 35(11): 883-885.Google Scholar
  59. 59.
    Hu, J.-L., C.H. Chan, and Y. Xu (2001). A new temporal basis function for the time-domain integral equation method. IEEE Microw. Wireless Compon. Lett. 11(11): 465-466.Google Scholar
  60. 60.
    van't Wout, E., et al. (2013). Design of temporal basis functions for time domain integral equation methods with predefined accuracy and smoothness. IEEE Trans. Antennas Propag. 61(1): 271-280.Google Scholar
  61. 61.
    Geranmayeh, A., W. Ackermann, and T. Weiland (2009). Temporal discretization choices for stable boundary element methods in electromagnetic scattering problems. Appl. Numer. Math. 59(11): 2751-2773.Google Scholar
  62. 62.
    Wang, P., et al. (2007). Time-domain integral equation solvers using quadratic B-spline temporal basis functions. Microw. Opt. Techn. Let. 49(5): 1154-1159.Google Scholar
  63. 63.
    Knab, J. (1979). Interpolation of band-limited functions using the approximate prolate series. IEEE Trans. Inf. Theory 25(6): 717-720.Google Scholar
  64. 64.
    Weile, D.S., et al. (2004). A novel scheme for the solution of the time-domain integral equations of electromagnetics. IEEE Trans. Antennas Propag. 52(1): 283-295.Google Scholar
  65. 65.
    Sayed, S.B., H.A. Ülkü, and H. Bağcι (2015). A stable marching on-in-time scheme for solving the time-domain electric field volume integral equation on high-contrast scatterers. IEEE Trans. Antennas Propag. 63(7): 3098-3110.Google Scholar
  66. 66.
    Graglia, R.D., D.R. Wilton, and A.F. Peterson (1997). Higher order interpolatory vector bases for computational electromagnetics. IEEE Trans. Antennas Propag. 45(3): 329-342.Google Scholar
  67. 67.
    Wildman, R.A., et al. (2004). An accurate scheme for the solution of the time-domain integral equations of electromagnetics using higher order vector bases and bandlimited extrapolation. IEEE Trans. Antennas Propag. 52(11): 2973-2984.Google Scholar
  68. 68.
    Wildman, R.A. and D.S. Weile (2004). An accurate broad-band method of moments using higher order basis functions and tree-loop decomposition. IEEE Trans. Antennas Propag. 52(11): 3005-3011.Google Scholar
  69. 69.
    Wildman, R.A. and D.S. Weile (2005). Two-dimensional transverse-magnetic time-domain scattering using the Nyström method and bandlimited extrapolation. IEEE Trans. Antennas Propag. 53(7): 2259-2266.Google Scholar
  70. 70.
    Nair, N.V., A.J. Pray, and B. Shanker (2010). Analysis of transient scattering from PEC objects using the generalized method of moments. Proc. IEEE Int. Symp. AP-S/URSI: 1-4.Google Scholar
  71. 71.
    Ulku, H.A., et al. (2017). Mixed discretization of the time-domain MFIE at low frequencies. IEEE Antennas Wireless Propag. Lett. 16: 1565-1568.Google Scholar
  72. 72.
    Lu, M. and E. Michielssen (2002). Closed form evaluation of time domain fields due to Rao-Wilton-Glisson sources for use in marching-on-in-time based EFIE solvers. Proc. IEEE Int. Symp. AP-S/URSI. 1: 74-77.Google Scholar
  73. 73.
    Shi, Y., et al. (2011). Stable electric field TDIE solvers via quasi-exact evaluation of MOT matrix elements. IEEE Trans. Antennas Propag. 59(2): 574-585.Google Scholar
  74. 74.
    Yucel, A.C. and A.A. Ergin (2006). Exact evaluation of retarded-time potential integrals for the RWG bases. IEEE Trans. Antennas Propag. 54(5): 1496-1502.Google Scholar
  75. 75.
    Ulku, H.A. and A.A. Ergin (2011). On the singularity of the closed-form expression of the magnetic field in time domain. IEEE Trans. Antennas Propag. 59(2): 691-694.Google Scholar
  76. 76.
    Ulku, H.A. and A.A. Ergin (2007). Analytical evaluation of transient magnetic fields due to RWG current bases. IEEE Trans. Antennas Propag. 55(12): 3565-3575.Google Scholar
  77. 77.
    Ulku, H.A. and A.A. Ergin (2011). Application of analytical retarded-time potential expressions to the solution of time domain integral equations. IEEE Trans. Antennas Propag. 59(11): 4123-4131.Google Scholar
  78. 78.
    Pingenot, J., S. Chakraborty, and V. Jandhyala (2006). Polar integration for exact space-time quadrature in time-domain integral equations. IEEE Trans. Antennas Propag. 54(10): 3037-3042.Google Scholar
  79. 79.
    Pray, A.J., N.V. Nair, and B. Shanker (2012). Stability properties of the time domain electric field integral equation using a separable approximation for the convolution with the retarded potential. IEEE Trans. Antennas Propag. 60(8): 3772-3781.Google Scholar
  80. 80.
    Zhu, M.-D., X.-L. Zhou, and W.-Y. Yin (2013). Efficient evaluation of double surface integrals in time-domain integral equation formulations. IEEE Trans. Antennas Propag. 61(9): 4653.Google Scholar
  81. 81.
    Rynne, B.P. (1985). Stability and convergence of time marching methods in scattering problems. IMA J. Appl. Math. 35(3): 297-310.Google Scholar
  82. 82.
    Rynne, B.P. and P.D. Smith (1990). Stability of time marching algorithms for the electric field integral equation. J. Electromagnet. Wave 4(12): 1181-1205.Google Scholar
  83. 83.
    Smith, P.D. (1990). Instabilities in time marching methods for scattering: Cause and rectification. Electromagnetics 10(4): 439-451.Google Scholar
  84. 84.
    Vechinski, D.A. and S.M. Rao (1992). A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 40(6): 661-665.Google Scholar
  85. 85.
    Sadigh, A. and E. Arvas (1993). Treating the instabilities in marching-on-in-time method from a different perspective. IEEE Trans. Antennas Propag. 41(12): 1695-1702.Google Scholar
  86. 86.
    Davies, P.J. (1998). A stability analysis of a time marching scheme for the general surface electric field integral equation. Appl. Numer. Math. 27(1): 33-57.Google Scholar
  87. 87.
    Davies, P.J. and D.B. Duncan (2004). Stability and convergence of collocation schemes for retarded potential integral equations. SIAM J. Numer. Anal. 42(3): 1167-1188.Google Scholar
  88. 88.
    Bluck, M.J. and S.P. Walker (1997). Time-domain BIE analysis of large three-dimensional electromagnetic scattering problems. IEEE Trans. Antennas Propag. 45(5): 894-901.Google Scholar
  89. 89.
    Dodson, S.J., S.P. Walker, and M.J. Bluck (1998). Implicitness and stability of time domain integral equation scattering analysis. Appl. Comp. Electromag. Soc. J. 13: 291-301.Google Scholar
  90. 90.
    Beghein, Y., et al. (2013). A space-time mixed Galerkin marching-on-in-time scheme for the time-domain combined field integral equation. IEEE Trans. Antennas Propag. 61(3): 1228-1238.Google Scholar
  91. 91.
    Abboud, T., J. Nedelec, and J. Volakis (2001). Stable solution of the retarded potential equations. 17th Ann. Rev. Prog. Appl. Computat. Electromagn.Google Scholar
  92. 92.
    Wang, X. and D.S. Weile (2011). Implicit Runge-Kutta methods for the discretization of time domain integral equations. IEEE Trans. Antennas Propag. 59(12): 4651-4663.Google Scholar
  93. 93.
    Ülkü, H.A., H.B.ğ.c. ı, and E. Michielssen (2013). Marching on-in-time solution of the time domain magnetic field integral equation using a predictor-corrector scheme. IEEE Trans. Antennas Propag. 61(8): 4120-4131.Google Scholar
  94. 94.
    Al-Jarro, A., et al. (2012). Explicit solution of the time domain volume integral equation using a stable predictor-corrector scheme. IEEE Trans. Antennas Propag. 60(11): 5203-5214.Google Scholar
  95. 95.
    Pisharody, G. and D.S. Weile (2005). Robust solution of time-domain integral equations using loop-tree decomposition and bandlimited extrapolation. IEEE Trans. Antennas Propag. 53(6): 2089-2098.Google Scholar
  96. 96.
    Pisharody, G. and D.S. Weile (2005). Electromagnetic scattering from perfect electric conductors using an augmented time-domain integral-equation technique. Microw. Opt. Techn. Let. 45(1): 26-31.Google Scholar
  97. 97.
    Andriulli, F.P., et al. (2009). Time domain Calderón identities and their application to the integral equation analysis of scattering by PEC objects part II: Stability. IEEE Trans. Antennas Propag. 57(8): 2365-2375.Google Scholar
  98. 98.
    Shi, Y., H. Bagci, and M. Lu (2013). On the internal resonant modes in marching-on-in-time solution of the time domain electric field integral equation. IEEE Trans. Antennas Propag. 61(8): 4389-4392.Google Scholar
  99. 99.
    Chen, N.-W., K. Aygun, and E. Michielssen (2001). Integral-equation-based analysis of transient scattering and radiation from conducting bodies at very low frequencies. IEE P-Microw. Anten. P. 148(6): 381-387.Google Scholar
  100. 100.
    Andriulli, F.P., et al. (2007). A marching-on-in-time hierarchical scheme for the solution of the time domain electric field integral equation. IEEE Trans. Antennas Propag. 55(12): 3734-3738.Google Scholar
  101. 101.
    Andriulli, F.P., et al. (2009). Analysis and regularization of the TD-EFIE low-frequency breakdown. IEEE Trans. Antennas Propag. 57(7): 2034-2046.Google Scholar
  102. 102.
    Bagci, H., et al. (2010). A well-conditioned integral-equation formulation for efficient transient analysis of electrically small microelectronic devices. IEEE Trans. Adv. Packag. 33(2): 468-480.Google Scholar
  103. 103.
    Cools, K., et al. (2009). Time domain Calderón identities and their application to the integral equation analysis of scattering by PEC objects Part I: Preconditioning. IEEE Trans. Antennas Propag. 57(8): 2352-2364.Google Scholar
  104. 104.
    Cools, K., et al. (2007). Calderón preconditioned time-domain integral equation solvers. Proc. IEEE Int. Symp. AP-S/URSI: 4565-4568.Google Scholar
  105. 105.
    Andriulli, F.P., et al. (2007). Calderón stabilized time domain integral equation solvers. Proc. IEEE Int. Symp. AP-S/URSI: 4573-4576.Google Scholar
  106. 106.
    Beghein, Y., K. Cools, and F.P. Andriulli (2015). A DC-stable, well-balanced, Calderón preconditioned time domain electric field integral equation. IEEE Trans. Antennas Propag. 63(12): 5650-5660.Google Scholar
  107. 107.
    Valdes, F., et al. (2011). High-order div-and quasi curl-conforming basis functions for Calderón multiplicative preconditioning of the EFIE. IEEE Trans. Antennas Propag. 59(4): 1321-1337.Google Scholar
  108. 108.
    Valdes, F., et al. (2013). High-order Calderón preconditioned time domain integral equation solvers. IEEE Trans. Antennas Propag. 61(5): 2570-2588.Google Scholar
  109. 109.
    Valdes, F., et al. (2013). Time-domain single-source integral equations for analyzing scattering from homogeneous penetrable objects. IEEE Trans. Antennas Propag. 61(3): 1239-1254.Google Scholar
  110. 110.
    Kaur, G. and A.E. Yilmaz (2011). On the performance of envelope-tracking surface-integral equation solvers. Proc. IEEE Int. Symp. AP-S/URSI: 2716-2719.Google Scholar
  111. 111.
    Mohan, A. and D.S. Weile (2005). A hybrid method of moments-marching on in time method for the solution of electromagnetic scattering problems. IEEE Trans. Antennas Propag. 53(3): 1237-1242.Google Scholar
  112. 112.
    Jiao, D., et al. (2001). A fast time-domain finite element-boundary integral method for electromagnetic analysis. IEEE Trans. Antennas Propag. 49(10): 1453-1461.Google Scholar
  113. 113.
    Jiao, D., et al. (2002). A fast higher-order time-domain finite element-boundary integral method for 3-D electromagnetic scattering analysis. IEEE Trans. Antennas Propag. 50(9): 1192-1202.Google Scholar
  114. 114.
    McCowen, A., A.J. Radcliffe, and M.S. Towers (2003). Time-domain modeling of scattering from arbitrary cylinders in two dimensions using a hybrid finite-element and integral equation method. IEEE Trans. Magn. 39(3): 1227-1229.Google Scholar
  115. 115.
    Monorchio, A., et al. (2004). A hybrid time-domain technique that combines the finite element, finite difference and method of moment techniques to solve complex electromagnetic problems. IEEE Trans. Antennas Propag. 52(10): 2666-2674.Google Scholar
  116. 116.
    Yilmaz, A.E., et al. (2007). A single-boundary implicit and FFT-accelerated time-domain finite element-boundary integral solver. IEEE Trans. Antennas Propag. 55(5): 1382-1397.Google Scholar
  117. 117.
    Cheng, G.S., D.Z. Ding, and R.S. Chen (2017). An efficient fast algorithm for accelerating the time-domain integral equation discontinuous Galerkin method. IEEE Trans. Antennas Propag. 65(9): 4919-4924.Google Scholar
  118. 118.
    Bleszynski, E., M. Bleszynski, and T. Jaroszewicz (1996). AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems. Radio Sci. 31(5): 1225-1251.Google Scholar
  119. 119.
    Yilmaz, A.E., et al. (2002). A hierarchical FFT algorithm (HIL-FFT) for the fast analysis of transient electromagnetic scattering phenomena. IEEE Trans. Antennas Propag. 50(7): 971-982.Google Scholar
  120. 120.
    Yilmaz, A.E., J.-M. Jin, and E. Michielssen (2007). Analysis of low-frequency electromagnetic transients by an extended time-domain adaptive integral method. IEEE Trans. Adv. Packag. 30(2): 301-312.Google Scholar
  121. 121.
    Boag, A., V. Lomakin, and E. Michielssen (2006). Nonuniform grid time domain (NGTD) algorithm for fast evaluation of transient wave fields. IEEE Trans. Antennas Propag. 54(7): 1943-1951.Google Scholar
  122. 122.
    Shanker, B., et al. (2003). Fast analysis of transient electromagnetic scattering phenomena using the multilevel plane wave time domain algorithm. IEEE Trans. Antennas Propag. 51(3): 628-641.Google Scholar
  123. 123.
    Gao, J., et al. (2003). Analysis of transient scattering from multiregion bodies using the plane wave time domain algorithm. Proc. IEEE Int. Symp. AP-S/URSI.Google Scholar
  124. 124.
    Hu, Y.L. and R.S. Chen (2016). Analysis of scattering from composite conducting dispersive dielectric objects by time-domain volume-surface integral equation. IEEE Trans. Antennas Propag. 64(5): 1984-1989.Google Scholar
  125. 125.
    Jiang, P.L. and E. Michielssen (2005). Multilevel plane wave time domain-enhanced MOT solver for analyzing electromagnetic scattering from objects residing in lossy media. Proc. IEEE Int. Symp. AP-S/URSI.Google Scholar
  126. 126.
    Jiang, P.-L. and E. Michielssen (2006). Multilevel PWTD-enhanced CFIE solver for analyzing EM scattering from PEC objects residing in lossy media. Proc. IEEE Int. Symp. AP-S/URSI: 2967-2970.Google Scholar
  127. 127.
    Jiang, P., et al. (2003). An improved plane wave time domain algorithm for dissipative media. Proc. IEEE Int. Symp. AP-S/URSI. 3: 563-566.Google Scholar
  128. 128.
    Jiang, P.-L. and E. Michielssen (2005). Temporal acceleration of time-domain integral-equation solvers for electromagnetic scattering from objects residing in lossy media. Microw. Opt. Techn. Let. 44(3): 223-230.Google Scholar
  129. 129.
    Aygun, K., et al. (2000). Analysis of PCB level EMI phenomena using an adaptive low-frequency plane wave time domain algorithm. Proc. IEEE Int. Symp. Electromagn. Compat. 1: 295-300.Google Scholar
  130. 130.
    Aygun, K., B. Shanker, and E. Michielssen (2001). Low frequency plane wave time domain kernels. Proc. Int. Conf. Electromagn. Adv. Appl.: 782-869.Google Scholar
  131. 131.
    Liu, Y., et al. (2018). A wavelet-enhanced PWTD-accelerated time-domain integral equation solver for analysis of transient scattering from electrically large conducting objects. IEEE Trans. Antennas Propag. 66(5): 2458-2470.Google Scholar
  132. 132.
    Lu, M., A.A. Ergin, and E. Michielssen (2000). Fast evaluation of transient fields in the presence of two half spaces using a plane wave time domain algorithm. Proc. IEEE Int. Symp. AP-S/URSI.Google Scholar
  133. 133.
    Chen, N., et al. (2003). Fast integral-equation-based analysis of transient scattering from doubly periodic perfectly conducting structures. Proc. IEEE Int. Symp. AP-S/URSI.Google Scholar
  134. 134.
    Lu, M., E. Michielssen, and B. Shanker (2004). Fast time domain integral equation solvers for analyzing two-dimensional scattering phenomena; Part II: full PWTD acceleration. Electromagnetics 24(6): 451-470.Google Scholar
  135. 135.
    Lu, M., et al. (2000). Fast evaluation of two-dimensional transient wave fields. J. Comput. Phys. 158(2): 161-185.Google Scholar
  136. 136.
    Shanker, B., et al. (2000). Analysis of transient electromagnetic scattering phenomena using a two-level plane wave time-domain algorithm. IEEE Trans. Antennas Propag. 48(4): 510-523.Google Scholar
  137. 137.
    Bost, F., L. Nicolas, and G. Rojat (2000). A time-domain integral formulation for the scattering by thin wires. IEEE Trans. Magn. 36(4): 868-871.Google Scholar
  138. 138.
    Ji, Z., et al. (2004). A stable solution of time domain electric field integral equation for thin-wire antennas using the Laguerre polynomials. IEEE Trans. Antennas Propag. 52(10): 2641-2649.Google Scholar
  139. 139.
    Excell, P.S., A.D. Tinniswood, and R.W. Clarke (1999). An independently fed log-periodic antenna for directed pulsed radiation. IEEE Trans. Electromagn. Compat. 41(4): 344-349.Google Scholar
  140. 140.
    Boryssenko, A.O. and D.H. Schaubert (2004). Time-domain integral-equation-based solver for transient and broadband problems in electromagnetics. Proc. Int. Conf. UWB/SP Electromagn., Springer: 239-249.Google Scholar
  141. 141.
    Thomas, K.G. and M. Sreenivasan (2010). A simple ultrawideband planar rectangular printed antenna with band dispensation. IEEE Trans. Antennas Propag. 58(1): 27-34.Google Scholar
  142. 142.
    Aygun, K., et al. (2002). A two-level plane wave time-domain algorithm for fast analysis of EMC/EMI problems. IEEE Trans. Electromagn. Compat. 44(1): 152-164.Google Scholar
  143. 143.
    Aygun, K., B. Shanker, and E. Michielssen (2002). Fast time-domain characterization of finite size microstrip structures. Int. J. Numer. Model. El. 15(5-6): 439-457.Google Scholar
  144. 144.
    Aygun, K., et al. (2004). A fast hybrid field-circuit simulator for transient analysis of microwave circuits. IEEE Trans. Microw. Theory Tech. 52(2): 573-583.Google Scholar
  145. 145.
    Yilmaz, A.E., J.-M. Jin, and E. Michielssen (2005). A parallel FFT accelerated transient field-circuit simulator. IEEE Trans. Microw. Theory Tech. 53(9): 2851-2865.Google Scholar
  146. 146.
    Bagci, H., A.E. Yilmaz, and E. Michielssen (2010). An FFT-accelerated time-domain multiconductor transmission line simulator. IEEE Trans. Electromagn. Compat. 52(1): 199-214.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborUSA

Personalised recommendations