Skip to main content

Evolving Instinctive Behaviour in Resource-Constrained Autonomous Agents Using Grammatical Evolution

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 12104)


Recent developments in the miniaturization of hardware have facilitated the use of robots or mobile sensory agents in many applications such as exploration of GPS-denied, hardly accessible unknown environments. This includes underground resource exploration and water pollution monitoring. One problem in scaling-down robots is that it puts significant emphasis on power consumption due to the limited energy available online. Furthermore, the design of adequate controllers for such agents is challenging as representing the system mathematically is difficult due to complexity. In that regard, Evolutionary Algorithms (EA) is a suitable choice for developing the controllers. However, the solution space for evolving those controllers is relatively large because of the wide range of the possible tunable parameters available on the hardware, in addition to the numerous number of objectives which appear on different design levels. A recently-proposed method, dubbed as Instinct Evolution Scheme (IES), offered a way to limit the solution space in these cases. This scheme uses Behavior Trees (BTs) to represent the robot behaviour in a modular, re-usable and intelligible fashion. In this paper, we improve upon the original IES by using Grammatical evolution (GE) to implement a full BT evolution model integratable with IES. A special emphasis is put on minimizing the complexity of the BT generated by GE. To test the scheme, we consider an environment exploration task on a virtual environment. Results show 85% correct reactions to environment stimuli and a decrease in relative complexity to 4.7%. Finally, the evolved BT is represented in an if-else on-chip compatible format.


  • Grammatical Evolution
  • Behavior Tree
  • Autonomous agents

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-43722-0_24
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-43722-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. Stoianov, I., Nachman, L., Madden, S., Tokmouline, T.: PIPENET a wireless sensor network for pipeline monitoring. In: Proceedings of the 6th International Conference on Information Processing in Sensor Networks - IPSN 2007, p. 264 (2007)

    Google Scholar 

  2. Nelson, B.J., Kaliakatsos, I.K., Abbott, J.J.: Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12(1), 55–85 (2010)

    CrossRef  Google Scholar 

  3. Fister, I., Fister Jr., I. (eds.): Adaptation and Hybridization in Computational Intelligence. ALO, vol. 18. Springer, Cham (2015).

    CrossRef  Google Scholar 

  4. Higuchi, T., Liu, Y., Yao, X.: Evolvable Hardware. Springer, Heidelberg (2006).

    CrossRef  MATH  Google Scholar 

  5. Mattiussi, C., Floreano, D.: Analog genetic encoding for the evolution of circuits and networks. IEEE Trans. Evol. Comput. 11(5), 596–607 (2007)

    CrossRef  Google Scholar 

  6. Glackin, B., Maguire, L.P., McGinnity, T.M.: Intrinsic and extrinsic implementation of a bio-inspired hardware system. Inf. Sci. 161(1–2), 1–19 (2004)

    CrossRef  Google Scholar 

  7. Hallawa, A., De Roose, J., Andraud, M., Verhelst, M., Ascheid, G.: Instinct-driven dynamic hardware reconfiguration: evolutionary algorithm optimized compression for autonomous sensory agents. In: Proceedings of the 2017 Annual Conference on Genetic and Evolutionary Computation. ACM (2017)

    Google Scholar 

  8. Pintér-Bartha, Á., Sobe, A., Elmenreich, W.: Towards the light - comparing evolved neural network controllers and finite state machine controllers. In: 10th International Workshop on Intelligent Solutions in Embedded Systems (2012)

    Google Scholar 

  9. König, L., Mostaghim, S., Schmeck, H.: Decentralized evolution of robotic behavior using finite state machines. Int. J. Intell. Comput. Cybern. 2(4), 695–723 (2009)

    MathSciNet  CrossRef  Google Scholar 

  10. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998).

    CrossRef  Google Scholar 

  11. Colledanchise, M., Ogren, P.: How behavior trees modularize hybrid control systems and generalize sequential behavior compositions, the subsumption architecture, and decision trees. IEEE Trans. Robot. 33(2), 372–389 (2017)

    CrossRef  Google Scholar 

  12. Nicolau, M., Perez-Liebana, D., O’Neill, M., Brabazon, A.: Evolutionary behavior tree approaches for navigating platform games. IEEE Trans. Comput. Intell. AI Games 9(3), 227–238 (2016)

    CrossRef  Google Scholar 

  13. Bagnell, J.A., et al.: An integrated system for autonomous robotics manipulation. In: IEEE International Conference on Intelligent Robots and Systems, pp. 2955–2962 (2012)

    Google Scholar 

  14. Marzinotto, A., Colledanchise, M., Smith, C., Ögren, P.: Towards a unified behavior trees framework for robot control. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5420–5427. IEEE (2014)

    Google Scholar 

  15. Keijzer, M., Ryan, C., O’Neill, M., Cattolico, M., Babovic, V.: Ripple crossover in genetic programming. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tettamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 74–86. Springer, Heidelberg (2001).

    CrossRef  Google Scholar 

  16. Nicolau, M., Dempsey, I.: Introducing grammar based extensions for grammatical evolution. In: Proceedings of the 2006 IEEE Congress on Evolutionary Computation, pp. 2663–2670, April 2006 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ahmed Hallawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Hallawa, A., Schug, S., Iacca, G., Ascheid, G. (2020). Evolving Instinctive Behaviour in Resource-Constrained Autonomous Agents Using Grammatical Evolution. In: Castillo, P.A., Jiménez Laredo, J.L., Fernández de Vega, F. (eds) Applications of Evolutionary Computation. EvoApplications 2020. Lecture Notes in Computer Science(), vol 12104. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43721-3

  • Online ISBN: 978-3-030-43722-0

  • eBook Packages: Computer ScienceComputer Science (R0)