Skip to main content

Structural Funds, Institutional Quality and Regional Economic Convergence in EU: A Spatial Econometric Approach

  • Chapter
  • First Online:
Innovations in Urban and Regional Systems

Abstract

The Structural Funds (SF), are the most important strategic tool of the European Union (EU) for the promotion of regional development. This chapter analyzes the effects of regionally targeted SF on labor productivity growth in 180 Nomenclature of Territorial Units for Statistics, level 2 (NUTS2) regions from 1989 to 2006. The main contributions of this chapter to the debate on the effectiveness of Cohesion Policy consist of two aspects: the spatial econometric technique adopted and the analysis of the effectiveness of SF conditional to regional institutional quality. Regarding the first contribution, the chapter shows that EU regions, after controlling for spatial dependence, not only have multiple steady states, but also heterogeneous convergence rates. Regarding the second contribution, it is demonstrated that, while regional institutional quality is not significant per se, it positively affects the effectiveness of Objective 1 SF. Under a policy perspective, regions, to achieve a higher effectiveness of SF on productivity growth, should invest primarily in strengthening their institutional capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A complete literature review can be found in Mohl and Hagen (2010).

  2. 2.

    Rodríguez-Pose and Garcilazo (2015) combine regional institutional quality indicators with Cohesion Policy expenditures to assess their effects on GDP per capita growth. Studies of Beugelsdijk and Eijffinger (2005), Ederveen et al. (2006) and Bähr (2008) include institutional quality indicators and data at the national level, while Arbia et al. (2010) use measures of national institutional quality with regional data.

  3. 3.

    In 1989–2006 period, the average correlation between Gross Value Added per employee and investment over Gross Value Added is −0.43. Correlation between Gross Value Added per employee and employment rate is, on average, 0.33.

  4. 4.

    Regions are specified in the appendix.

  5. 5.

    See Ederveen et al. (2002), Dall’erba and Le Gallo (2008), Esposti and Bussoletti (2008).

  6. 6.

    According to ISCED, tertiary programmes include academic orientation which are largely theoretical and tertiary programmes with an occupational orientation. Examples are Bachelor’s degrees in many English-speaking countries, the “Diplom” in many German-speaking countries and the Licence in many French-speaking countries.

  7. 7.

    The share of Structural Funds over GVA is not used because, following Esposti and Bussoletti (2008) and Mohl and Hagen (2010), this can lead to simultaneity problems that might bias the results, since GVA (growth) then appears on both sides of the regression equation.

  8. 8.

    The matrix that produced better results is a four-nearest neighbors row standardized matrix.

  9. 9.

    To compute the MC statistic and spatial filters, a set of runtimes were developed in the R environment.

  10. 10.

    A lower bound would cause the inclusion of eigenvectors that account for a spatial random process.

  11. 11.

    This is evident in Italy, where the assessment of Institutions of southern regions is one of the worst in Europe, while the assessment of Institutions of the regions of northern Italy is immediately below German regions, which have very positive assessments.

  12. 12.

    For Model 1 (Base model), the Wald test is 9.949, excluding H0 at 5% level, while for Model 2 (Base model + SF), the Wald test is 13.598 and leading to do not accept H0 at 1% level.

  13. 13.

    In the appendix, speed of convergence of Model 1 (Base model) and Model 2 (Base model + SF) are reported.

  14. 14.

    A case study approach would allow to understand the link between regions and the cluster to which they belong to.

References

  • Amin, A. (1999). An institutionalist perspective on regional development. International Journal of Urban and Regional Research, 23(2), 365–378.

    Article  Google Scholar 

  • Arbia, G., Battisti, M., & Di Vaio, G. (2010). Institutions and geography: Empirical test of spatial growth models for European regions. Economic Modelling, 27(1), 12–21.

    Article  Google Scholar 

  • Bachtler, J., & Gorzelak, G. (2007). Reforming EU cohesion policy a reappraisal of the performance of the structural funds. Policy Studies, 28(4), 309–326.

    Article  Google Scholar 

  • Bähr, C. (2008). How does sub-national autonomy affect the effectiveness of structural funds? Kyklos, 61(1), 3–18.

    Article  Google Scholar 

  • Barro, R. J., & Sala-i-Martin, X. (1990). Economic growth and convergence across the United States. NBER Working Paper 3419.

    Google Scholar 

  • Becker, S. O., Egger, P., & Von Ehrlich, M. (2010). Going NUTS: The effect of EU structural funds on regional performance. Journal of Public Economics, 94(9–10), 578–590.

    Article  Google Scholar 

  • Beugelsdijk, M., & Eijffinger, S. C. W. (2005). The effectiveness of structural policy in the European Union: An empirical analysis for the EU-15 during the period 1995–2001. Journal of Common Market Studies, 43(1), 37–51.

    Article  Google Scholar 

  • Boldrin, M., & Canova, F. (2001). Inequality and convergence in Europe’s regions: Reconsidering European regional policies. Economic Policy, 16(32), 205–253.

    Article  Google Scholar 

  • Cambridge Econometrics Database 2010

    Google Scholar 

  • Canova, F. (2004). Testing for convergence clubs: A predictive density approach. International Economic Review, 45(1), 49–78.

    Article  Google Scholar 

  • Cappelen, A., Castellacci, F., Fagerberg, J., & Verspagen, B. (2003). The impact of EU regional support on growth and convergence in the European Union. Journal of Common Market Studies, 41(4), 621–644.

    Article  Google Scholar 

  • Charron, N., Lapuente, V., & Rothstein, B. (Eds.). (2013). Measuring the quality of government in the European Union: A comparative analysis of national and regional variation. Cheltenham UK, Northampton USA: Edward Elgar Publishing.

    Google Scholar 

  • Dall’erba, S., & Le Gallo, J. (2007). The impact of EU regional support on growth and employment. Czech Journal of Economics and Finance, 57(7–8), 325–340.

    Google Scholar 

  • Dall’erba, S., & Le Gallo, J. (2008). Regional convergence and the impact of European structural funds 1989–1999: A spatial econometric analysis. Papers in Regional Science, 82(2), 219–244.

    Google Scholar 

  • Ederveen, S., Gorter, J., De Mooij, R., & Nahuis, R. (2002). Funds and games: The economics of European Cohesion Policy. Occasional Paper No. 3. Brussels: European Network of European Policy Research Institutes. https://aei.pitt.edu/1839/1/ENEPRI_OP5.pdf. Accessed May 13, 2013.

  • Ederveen, S., Le Groot, H., & Nahuis, R. (2006). Fertile soil for structural funds? A panel data analysis of the conditional effectiveness of European Cohesion Policy. Kyklos, 59(1), 17–42.

    Article  Google Scholar 

  • Ederveen, S., Van Der Horst, A., & Tang, P. (2005). Is the European economy a patient and the union its doctor? On jobs and growth in Europe. ENEPRI Working Paper No. 35/April 2005. https://aei.pitt.edu/6739/1/1218_35.pdf. Accessed May 13, 2013.

  • Esposti, R., & Bussoletti, S. (2008). Impact of Objective 1 funds on regional growth convergence in the European Union: A panel-data approach. Regional Studies, 42(2), 159–173.

    Article  Google Scholar 

  • EuroGeographics for the administrative boundaries. https://ec.europa.eu/eurostat/web/gisco. Accessed May 13, 2013.

  • European Commission. (1995). Fifth Annual Report on the implementation of the reform of structural funds 1993, Brussels.

    Google Scholar 

  • European Commission. (1997). The impact of structural policies on economic and social cohesion in the Union 1989–99 a first assessment presented by country (October 1996): regional development studies, Luxembourg.

    Google Scholar 

  • European Commission. (1999). The structural funds in 1998. Tenth Annual Report, Brussels.

    Google Scholar 

  • European Commission. (2004). A new partnership for cohesion, convergence, competitiveness, cooperation. Third Report on Economic and Social Cohesion. Luxembourg: Office for Official Publications of the EC.

    Google Scholar 

  • European Commission. (2006). 18th Annual Report on implementation of the structural funds. Luxembourg: Office for Official Publications of the EC.

    Google Scholar 

  • European Commission. (2007). Growing regions, growing Europe. Fourth Report on Economic and Social Cohesion. Luxembourg: Office for Official Publications of the EC.

    Google Scholar 

  • European Commission. (2010). Investing in Europe’s future. Fifth Report on Economic, Social and Territorial Cohesion. Luxembourg: Office for Official Publications of the EC.

    Google Scholar 

  • Eurostat Region Database. https://ec.europa.eu/eurostat/web/regions/data/database. Accessed May 13, 2013.

  • Fagerberg, J., & Verspagen, B. (1996). Heading for divergence? Regional growth in Europe reconsidered. Journal of Common Market Studies, 34(3), 431–448.

    Article  Google Scholar 

  • Falk, M., & Sinabell, F. (2008). The effectiveness of Objective 1 structural funds in the EU15: New empirical evidence from NUTS 3 regions. WIFO Working Papers 310. https://franz.sinabell.wifo.ac.at/papers/WP_2007_310.PDF. Accessed May 13, 2013.

  • Fischer, M., & Griffith, D. A. (2008). Modeling spatial autocorrelation in spatial interaction data: An application to patent citation data in the European Union. Journal of Regional Science, 48(5), 969–989.

    Article  Google Scholar 

  • Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression: The analysis of spatially varying relationships. West Sussex: Wiley.

    Google Scholar 

  • Getis, A. (1995). Spatial filtering in a regression framework: Experiments on regional inequality, government expenditures, and urban crime. In L. Anselin & R. J. G. M. Florax (Eds.), New directions in spatial econometrics (pp. 172–188). Berlin: Springer.

    Chapter  Google Scholar 

  • Getis, A., & Griffith, D. A. (2002). Comparative spatial filtering in regression analysis. Geographical Analysis, 34(2), 130–140.

    Article  Google Scholar 

  • Griffith, D. A. (2003). Spatial autocorrelation and spatial filtering: Gaining understanding through theory and scientific visualization. Berlin: Springer.

    Book  Google Scholar 

  • Griffith, D. A. (2008). Spatial filtering-based contribution to a critique of geographically weighted regression (GWR). Environment and Planning A, 40(11), 2751–2769.

    Article  Google Scholar 

  • Hagen, T., & Mohl, P. (2008). Which is the right dose of EU Cohesion Policy for economic growth? ZEW Discussion Paper 08-104. https://ftp.zew.de/pub/zew-docs/dp/dp08104.pdf. Accessed May 13, 2013.

  • Kaufmann, D., Kraay, A., & Mastruzzi, M. (2009). Governance matters VIII: Aggregate and individual governance indicators for 1996–2008. World Bank Policy Research Working Paper No. 4978. https://www-wds.worldbank.org/servlet/WDSContentServer/WDSP/IB/2009/06/29/000158349_20090629095443/Rendered/PDF/WPS4978.pdf. Accessed May 13, 2013.

  • Krugman, P. (1992). The age of diminished expectations: US economic policy in the 1980s. Cambridge: MIT Press.

    Google Scholar 

  • Leonardi, R. (2005). The cohesion policy of the European Union: The building of Europe. London: Palgrave.

    Book  Google Scholar 

  • Leonardi, R. (2006). The impact and added value of cohesion policy. Regional Studies, 40(2), 155–166.

    Article  Google Scholar 

  • López-Bazo, E., Vayá, E., & Artís, M. (2004). Regional externalities and growth: Evidence from European regions. Journal of Regional Science, 44(1), 43–73.

    Article  Google Scholar 

  • Mankiw, G. N., Romer, D., & Weil, D. N. (1992). A contribution to the empirics of economic growth. Quarterly Journal of Economics, 107(2), 407–437.

    Article  Google Scholar 

  • Mohl, P., & Hagen, T. (2010). Do EU structural funds promote regional growth? New evidence from various panel data approaches. Regional Science and Urban Economics, 40(5), 353–365.

    Article  Google Scholar 

  • OECD. (2009). Investing for growth: Building innovative regions. Background Report for the Meeting of the Territorial Development Policy Committee at Ministerial Level. Paris: OECD Publishing.

    Google Scholar 

  • OECD. (2011). OECD science, technology and industry scoreboard 2011. OECD Publishing. https://www.oecd-ilibrary.org/science-and-technology/oecd-science-technology-and-industry-scoreboard-2011_sti_scoreboard-2011-en. Accessed May 13, 2013.

  • Puga, D. (2002). European regional policies in light of recent location theories. Journal of Economic Geography, 2(4), 373–406.

    Article  Google Scholar 

  • Puigcerver-Peñalver, M. (2007). The impact of structural funds policy on European regions’ growth: A theoretical and empirical approach. The European Journal of Comparative Economics, 4(2), 179–208.

    Google Scholar 

  • Quah, D. (1996). Regional convergence clusters across Europe. European Economic Review, 40(3–5), 951–958.

    Article  Google Scholar 

  • Quah, D. (1997). Empirics for growth and distribution: Stratification, polarisation and convergence clubs. Journal of Economic Growth, 2, 101–120.

    Article  Google Scholar 

  • Ramajo, J., Márquez, M., Hewings, G., & Salinas, S. (2008). Spatial heterogeneity and interregional spillovers in the European Union: Do cohesion policies encourage convergence across regions? European Economic Review, 52(3), 551–567.

    Article  Google Scholar 

  • Rodríguez-Pose, A., & Fratesi, U. (2004). Between development and social policies: The impact of European structural funds in Objective 1 regions. Regional Studies, 38(1), 97–113.

    Google Scholar 

  • Rodríguez-Pose, A., & Garcilazo, E. (2015). Quality of government and the returns of investment: Examining the impact of cohesion expenditure in European regions. Regional Studies, 49(8), 1274–1290.

    Article  Google Scholar 

  • Rodríguez-Pose, A., & Storper, M. (2006). Better rules or stronger communities? On the social foundations of institutional change and its economic effects. Economic Geography, 82(1), 1–25.

    Article  Google Scholar 

  • Schultz, T. W. (1961). Investment in human capital. The American Economic Review, 51(11), 1–17.

    Google Scholar 

  • Tiefelsdorf, M., & Boots, B. (1995). The exact distribution of Moran’s I. Environment and Planning A, 27(6), 985–999.

    Article  Google Scholar 

  • Treaty Establishing the European Community. (2002). Official Journal of the European Communities. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A12002E%2FTXT. Accessed May 13, 2013.

  • Van Ark, B. (2006). Does the European Union need to revive productivity growth? In S. Mundschenk, M. H. Stierl, U. Stierle von Schütz, & I. Traistaru (Eds.), Competitiveness and growth in Europe. Lessons and policy implications for the Lisbon strategy (pp. 101–126). Cheltenham: Edward Elgar Publishers.

    Google Scholar 

  • Wheeler, D. (2007). Diagnostic tools and a remedial method for collinearity in geographically weighted regression. Environment and Planning A, 39(10), 2464–2481.

    Article  Google Scholar 

  • Wooldridge, J. M. (2003). Introductory econometrics: A modern approach. Mason: Thomson.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Pontarollo .

Editor information

Editors and Affiliations

Appendix: List of EU Regions Included in the Analysis and Associated Coefficient of ln(GVA/EMP_89)

Appendix: List of EU Regions Included in the Analysis and Associated Coefficient of ln(GVA/EMP_89)

Country

NUTS code

Name

Coefficient of ln(GVA/EMP_89) of Model 2 (Base model + SF)

Coefficient of ln(GVA/EMP_89) of Model 1 (Base model F)

BE

BE10

Région de Bruxelles-Capitale

−0.00865

0.01526

BE

BE21

Prov. Antwerpen

−0.01288

0.01388

BE

BE22

Prov. Limburg

−0.01683

−0.00931

BE

BE23

Prov. Oost-Vlaanderen

−0.02198

−0.00746

BE

BE24

Prov. Vlaams-Brabant

−0.00930

0.01212

BE

BE25

Prov. West-Vlaanderen

−0.02512

−0.01372

BE

BE31

Prov. Brabant Wallon

−0.00930

0.01212

BE

BE32

Prov. Hainaut

−0.01673

0.00028

BE

BE33

Prov. Liège

−0.00987

−0.01503

BE

BE34

Prov. Luxembourg

−0.00513

−0.01270

BE

BE35

Prov. Namur

−0.00941

0.00095

DE

DE11

Stuttgart

−0.06502

−0.03573

DE

DE12

Karlsruhe

−0.04963

−0.03184

DE

DE13

Freiburg

−0.04009

−0.02895

DE

DE14

Tübingen

−0.05349

−0.03184

DE

DE21

Oberbayern

−0.05858

−0.03500

DE

DE22

Niederbayern

−0.05018

−0.03316

DE

DE23

Oberpfalz

−0.05695

−0.03535

DE

DE24

Oberfranken

−0.05868

−0.03609

DE

DE25

Mittelfranken

−0.06824

−0.03724

DE

DE26

Unterfranken

−0.06392

−0.03744

DE

DE27

Schwaben

−0.06190

−0.03468

DE

DE30

Berlin

−0.03184

−0.04930

DE

DE41

Brandenburg

−0.03147

−0.04439

DE

DE42

Brandenburg

−0.03285

−0.05236

DE

DE50

Bremen

−0.02660

−0.03265

DE

DE60

Hamburg

−0.02459

−0.03116

DE

DE71

Darmstadt

−0.04841

−0.03255

DE

DE72

Gießen

−0.04001

−0.02999

DE

DE73

Kassel

−0.04515

−0.03302

DE

DE80

Mecklenburg-Vorpommern

−0.03174

−0.03855

DE

DE91

Braunschweig

−0.03423

−0.03446

DE

DE92

Hannover

−0.02600

−0.03413

DE

DE93

Lüneburg

−0.02348

−0.03349

DE

DE94

Weser-Ems

−0.03879

−0.02609

DE

DEA1

Düsseldorf

−0.02831

−0.02092

DE

DEA2

Köln

−0.01794

−0.02204

DE

DEA3

Münster

−0.03586

−0.02425

DE

DEA4

Detmold

−0.03306

−0.03174

DE

DEA5

Arnsberg

−0.03305

−0.02725

DE

DEB1

Koblenz

−0.01651

−0.02428

DE

DEB2

Trier

−0.00507

−0.02199

DE

DEB3

Rheinhessen-Pfalz

−0.02970

−0.02814

DE

DEC0

Saarland

−0.00589

−0.02300

DE

DED1

Chemnitz

−0.03807

−0.04172

DE

DED2

Dresden

−0.03316

−0.04500

DE

DED3

Leipzig

−0.03388

−0.05044

DE

DEE0

Sachsen-Anhalt

−0.03564

−0.04078

DE

DEF0

Schleswig-Holstein

−0.02459

−0.03116

DE

DEG0

Thüringen

−0.04473

−0.03620

DK

DK0

Danmark

−0.02742

−0.02887

EL

EL11

Anatoliki Makedonia, Thraki

−0.03449

−0.03559

EL

EL12

Kentriki Makedonia

−0.03832

−0.03722

EL

EL13

Dytiki Makedonia

−0.02832

−0.02180

EL

EL14

Thessalia

−0.02674

−0.02669

EL

EL21

Ipeiros

−0.02826

−0.02708

EL

EL22

Ionia Nisia

−0.02807

−0.03972

EL

EL23

Dytiki Ellada

−0.02710

−0.04447

EL

EL24

Sterea Ellada

−0.02582

−0.04036

EL

EL25

Peloponnisos

−0.02699

−0.04804

EL

EL30

Attiki

−0.02726

−0.04189

EL

EL41

Voreio Aigaio

−0.02987

−0.02859

EL

EL42

Notio Aigaio

−0.02978

−0.03640

EL

EL43

Kriti

−0.02967

−0.03824

ES

ES11

Galicia

−0.02972

−0.00708

ES

ES12

Principado de Asturias

−0.02978

−0.00795

ES

ES13

Cantabria

−0.04389

−0.03369

ES

ES21

País Vasco

−0.04283

−0.02951

ES

ES22

Comunidad Foral de Navarra

−0.04170

−0.02842

ES

ES23

La Rioja

−0.04599

−0.03179

ES

ES24

Aragón

−0.04304

−0.03458

ES

ES30

Comunidad de Madrid

−0.04089

−0.03087

ES

ES41

Castilla y León

−0.04129

−0.03457

ES

ES42

Castilla-la Mancha

−0.03872

−0.02989

ES

ES43

Extremadura

−0.03056

−0.03322

ES

ES51

Cataluña

−0.03587

−0.03776

ES

ES52

Comunidad Valenciana

−0.03908

−0.03316

ES

ES53

Illes Balears

−0.03496

−0.03412

ES

ES61

Andalucía

−0.03587

−0.02921

ES

ES62

Región de Murcia

−0.03775

−0.02949

FR

FR10

Île de France

−0.02784

−0.01839

FR

FR21

Champagne-Ardenne

−0.01813

−0.02104

FR

FR22

Picardie

−0.02645

−0.01638

FR

FR23

Haute-Normandie

−0.02749

−0.01914

FR

FR24

Centre

−0.02800

−0.02013

FR

FR25

Basse-Normandie

−0.02724

−0.02294

FR

FR26

Bourgogne

−0.01720

−0.02707

FR

FR30

Nord

−0.02573

−0.01530

FR

FR41

Lorraine

−0.00836

−0.02221

FR

FR42

Alsace

−0.02476

−0.02621

FR

FR43

Franche-Comté

−0.01708

−0.02755

FR

FR51

Pays de la Loire

−0.02881

−0.02437

FR

FR52

Bretagne

−0.02909

−0.02755

FR

FR53

Poitou–Charentes

−0.02908

−0.02195

FR

FR61

Aquitaine

−0.03287

−0.02552

FR

FR62

Midi-Pyrénées

−0.03135

−0.03218

FR

FR63

Limousin

−0.02751

−0.02596

FR

FR71

Rhône-Alpes

−0.01573

−0.03007

FR

FR72

Auvergne

−0.02372

−0.02943

FR

FR81

Languedoc-Roussillon

−0.03018

−0.03472

FR

FR82

Provence-Alpes-Côte d’Azur

−0.02145

−0.03165

FR

FR83

Corse

−0.03360

−0.03846

IE

IE01

Border, Midland and Western

−0.02945

−0.02447

IE

IE02

Southern and Eastern

−0.02839

−0.02145

IT

ITC1

Piemonte

−0.02273

−0.03570

IT

ITC2

Valle d’Aosta

−0.01868

−0.03323

IT

ITC3

Liguria

−0.02450

−0.03897

IT

ITC4

Lombardia

−0.03287

−0.04005

IT

ITD5

Emilia-Romagna

−0.05180

−0.03658

IT

ITE1

Toscna

−0.04515

−0.04081

IT

ITE2

Umbria

−0.04630

−0.03866

IT

ITE3

Marche

−0.04347

−0.03312

IT

ITE4

Lazio

−0.04299

−0.04520

IT

ITF1

Abruzzo

−0.04827

−0.05604

IT

ITF2

Molise

−0.05309

−0.06160

IT

ITF3

Campania

−0.05309

−0.06160

IT

ITF4

Puglia

−0.05728

−0.06795

IT

ITF5

Basilicata

−0.05766

−0.06698

IT

ITF6

Calabria

−0.05936

−0.06709

IT

ITG1

Sicilia

−0.05536

−0.05978

IT

ITG2

Sardegna

−0.05045

−0.05225

IT

ITH1

Provincia Autonoma di Bolzano

−0.05446

−0.05803

IT

ITH2

Provincia Autonoma di Trento

−0.04800

−0.04856

IT

ITH3

Veneto

−0.04475

−0.04429

IT

ITH4

Friuli-Venezia Giulia

−0.03583

−0.03930

LU

LU0

Luxembourg

−0.00117

−0.01872

NL

NL11

Groningen

−0.04957

−0.02334

NL

NL12

Friesland

−0.04987

−0.02180

NL

NL13

Drenthe

−0.05030

−0.02261

NL

NL21

Overijssel

−0.05148

−0.02107

NL

NL22

Gelderland

−0.04488

−0.01823

NL

NL23

Flevoland

−0.04948

−0.01562

NL

NL31

Utrecht

−0.04195

−0.00958

NL

NL32

Noord-Holland

−0.04076

−0.01246

NL

NL33

Zuid-Holland

−0.03385

−0.00709

NL

NL34

Zeeland

−0.02494

−0.00682

NL

NL41

Noord-Brabant

−0.02743

−0.00345

NL

NL42

Limburg

−0.02102

−0.01447

PT

PT11

Norte

−0.03289

−0.03683

PT

PT15

Algarve

−0.02936

−0.02915

PT

PT16

Centro

−0.02968

−0.03434

PT

PT17

Lisboa

−0.02910

−0.03000

PT

PT18

Alentejo

−0.02893

−0.03068

UK

UKC1

Tees Valley and Durham

−0.02386

−0.02209

UK

UKC2

Northumberland and Tyne and Wear

−0.02355

−0.02073

UK

UKD1

Cumbria

−0.02210

−0.01628

UK

UKD2

Cheshire

−0.01766

0.00291

UK

UKD3

Greater Manchester

−0.01829

0.00215

UK

UKD4

Lancashire

−0.01914

−0.00389

UK

UKD5

Merseyside

−0.01961

−0.00160

UK

UKE1

East Yorkshire and Northern Lincolnshire

−0.02391

−0.01020

UK

UKE2

North Yorkshire

−0.02187

−0.01344

UK

UKE3

South Yorkshire

−0.02110

−0.00472

UK

UKE4

West Yorkshire

−0.01989

−0.00404

UK

UKF1

Derbyshire and Nottinghamshire

−0.01904

0.00295

UK

UKF2

Leicestershire, Rutland and Northamptonshire

−0.01952

0.00173

UK

UKF3

Lincolnshire

−0.02505

−0.00954

UK

UKG1

Herefordshire, Worcestershire and Warwickshire

−0.02081

−0.01085

UK

UKG2

Shropshire and Staffordshire

−0.01910

−0.00064

UK

UKG3

West Midlands

−0.01942

−0.00163

UK

UKH1

East Anglia

−0.02577

−0.01244

UK

UKH2

Bedfordshire and Hertfordshire

−0.01789

0.00192

UK

UKH3

Essex

−0.02151

−0.00534

UK

UKI1

Inner London

−0.01864

−0.00086

UK

UKI2

Outer London

−0.01690

0.00066

UK

UKJ1

Berkshire, Buckinghamshire and Oxfordshire

−0.02184

−0.00881

UK

UKJ2

Surrey, East and West Sussex

−0.01973

−0.00599

UK

UKJ3

Hampshire and Isle of Wight

−0.02314

−0.02022

UK

UKJ4

Kent

−0.02203

−0.00747

UK

UKK1

Gloucestershire, Wiltshire and Bristol/Bath area

−0.02410

−0.02361

UK

UKK2

Dorset and Somerset

−0.02513

−0.02655

UK

UKK3

Cornwall and Isles of Scilly

−0.02765

−0.02023

UK

UKK4

Devon

−0.02695

−0.02413

UK

UKL1

West Wales and The Valleys

−0.02684

−0.01633

UK

UKL2

East Wales

−0.02506

−0.01442

UK

UKM2

Eastern Scotland

−0.02833

−0.02089

UK

UKM3

South Western Scotland

−0.02732

−0.02014

UK

UKM5

North Eastern Scotland

−0.02695

−0.01394

UK

UKM6

Highlands and Islands

−0.02798

−0.01661

UK

UKN0

Northern Ireland

−0.02984

−0.00706

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montresor, E., Pecci, F., Pontarollo, N. (2020). Structural Funds, Institutional Quality and Regional Economic Convergence in EU: A Spatial Econometric Approach. In: Thill, JC. (eds) Innovations in Urban and Regional Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-43694-0_13

Download citation

Publish with us

Policies and ethics