Skip to main content

On the Combined Impact of Population Size and Sub-problem Selection in MOEA/D

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 12102)

Abstract

This paper intends to understand and to improve the working principle of decomposition-based multi-objective evolutionary algorithms. We review the design of the well-established Moea/d framework to support the smooth integration of different strategies for sub-problem selection, while emphasizing the role of the population size and of the number of offspring created at each generation. By conducting a comprehensive empirical analysis on a wide range of multi- and many-objective combinatorial NK landscapes, we provide new insights into the combined effect of those parameters on the anytime performance of the underlying search process. In particular, we show that even a simple random strategy selecting sub-problems at random outperforms existing sophisticated strategies. We also study the sensitivity of such strategies with respect to the ruggedness and the objective space dimension of the target problem.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-43680-3_9
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-43680-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Aghabeig, M., Jaszkiewicz, A.: Experimental analysis of design elements of scalarizing function-based multiobjective evolutionary algorithms. Soft. Comput. 23(21), 10769–10780 (2018). https://doi.org/10.1007/s00500-018-3631-x

    CrossRef  Google Scholar 

  2. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    CrossRef  Google Scholar 

  3. Cai, X., Li, Y., Fan, Z., Zhang, Q.: An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization. IEEE Trans. Evolut. Comput. 19(4), 508–523 (2015)

    CrossRef  Google Scholar 

  4. Chiang, T., Lai, Y.: MOEA/D-AMS: improving MOEA/D by an adaptive mating selection mechanism. In: CEC 2011, pp. 1473–1480 (2011)

    Google Scholar 

  5. Corus, D., Oliveto, P.S.: Standard steady state genetic algorithms can Hillclimb faster than mutation-only evolutionary algorithms. IEEE Trans. Evol. Comput. 22(5), 720–732 (2018)

    CrossRef  Google Scholar 

  6. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 45(3), 1–33 (2013)

    CrossRef  Google Scholar 

  7. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Hoboken (2001)

    MATH  Google Scholar 

  8. Glasmachers, T., Naujoks, B., Rudolph, G.: Start small, grow big? Saving multi-objective function evaluations. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 579–588. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_57

    CrossRef  Google Scholar 

  9. Ishibuchi, H., Imada, R., Masuyama, N., Nojima, Y.: Two-layered weight vector specification in decomposition-based multi-objective algorithms for many-objective optimization problems. In: CEC, pp. 2434–2441 (2019)

    Google Scholar 

  10. Lavinas, Y., Aranha, C., Ladeira, M.: Improving resource allocation in MOEA/D with decision-space diversity metrics. In: Martín-Vide, C., Pond, G., Vega-Rodríguez, M.A. (eds.) TPNC 2019. LNCS, vol. 11934, pp. 134–146. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34500-6_9

    CrossRef  Google Scholar 

  11. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    CrossRef  Google Scholar 

  12. Li, K., Zhang, Q., Kwong, S., Li, M., Wang, R.: Stable matching-based selection in evolutionary multiobjective optimization. IEEE TEC 18(6), 909–923 (2014)

    Google Scholar 

  13. Marquet, G., Derbel, B., Liefooghe, A., Talbi, E.-G.: Shake them all! Rethinking selection and replacement in MOEA/D. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 641–651. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_63

    CrossRef  Google Scholar 

  14. Schumer, M., Steiglitz, K.: Adaptive step size random search. IEEE Trans. Autom. Control 13(3), 270–276 (1968)

    CrossRef  Google Scholar 

  15. Tanabe, R., Ishibuchi, H.: An analysis of control parameters of MOEA/D under two different optimization scenarios. Appl. Soft Comput. 70, 22–40 (2018)

    CrossRef  Google Scholar 

  16. Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multiobjective evolutionary algorithms based on decomposition. IEEE TEC 21(3), 440–462 (2017)

    Google Scholar 

  17. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multiobjective combinatorial search space: MNK-Landscapes with correlated objectives. Eur. J. Oper. Res. 227(2), 331–342 (2013)

    CrossRef  MathSciNet  Google Scholar 

  18. Wang, P., et al.: A new resource allocation strategy based on the relationship between subproblems for MOEA/D. Inf. Sci. 501, 337–362 (2019)

    CrossRef  MathSciNet  Google Scholar 

  19. Wang, Z., Zhang, Q., Zhou, A., Gong, M., Jiao, L.: Adaptive replacement strategies for MOEA/D. IEEE Trans. Cybern. 46(2), 474–486 (2016)

    CrossRef  Google Scholar 

  20. Witt, C.: Population size versus runtime of a simple evolutionary algorithm. Theor. Comput. Sci. 403(1), 104–120 (2008)

    CrossRef  MathSciNet  Google Scholar 

  21. Zapotecas-Martínez, S., Aguirre, H., Tanaka, K., Coello, C.: On the low-discrepancy sequences and their use in MOEA/D for high-dimensional objective spaces. In: Congress on Evolutionary Computation (CEC 2015), pp. 2835–2842 (2015)

    Google Scholar 

  22. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    CrossRef  Google Scholar 

  23. Zhou, A., Zhang, Q.: Are all the subproblems equally important? Resource allocation in decomposition-based multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 20(1), 52–64 (2016)

    CrossRef  Google Scholar 

  24. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    CrossRef  Google Scholar 

Download references

Acknowledgments

This work was supported by the French national research agency (ANR-16-CE23-0013-01) and the Research Grants Council of Hong Kong (RGC Project No. A-CityU101/16).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geoffrey Pruvost , Bilel Derbel , Arnaud Liefooghe , Ke Li or Qingfu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Pruvost, G., Derbel, B., Liefooghe, A., Li, K., Zhang, Q. (2020). On the Combined Impact of Population Size and Sub-problem Selection in MOEA/D. In: Paquete, L., Zarges, C. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2020. Lecture Notes in Computer Science(), vol 12102. Springer, Cham. https://doi.org/10.1007/978-3-030-43680-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43680-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43679-7

  • Online ISBN: 978-3-030-43680-3

  • eBook Packages: Computer ScienceComputer Science (R0)