Skip to main content

Temperature and Humidity Measurements

  • 714 Accesses

Abstract

In recent years, post-process high-speed, modern signal conditioning methods, low-power and low-cost microelectronic hybrid circuits and advances in miniaturisation technologies have driven improvements in sensor manufacturing [1]. Additionally, the sensor must have a high degree of efficiency relative to its calibration circumstances and sensing mechanism [1]. To save time and improve quality in the implementation of mass production processes, many simulation techniques and design aides can be utilised in the sensor design phase to predict and improve output data [1]. Furthermore, the miniaturisation of sensors offers a wide variety of advantages (e.g. low hysteresis and batch fabrication) [1].

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Farahani H, Wagiran R, Hamidon M (2014) Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14(5):7881–7939

    CrossRef  PubMed  CAS  Google Scholar 

  2. Carr-Brion K (1986) Moisture sensors in process control. Elsevier, London

    Google Scholar 

  3. Wiederhold PR (2012) Water vapor measurement: Methods and instrumentation. CRC, Boca Raton

    CrossRef  Google Scholar 

  4. Willard HH, Merritt Jr LL, Dean JA, Settle Jr FA (1988) Instrumental methods of analysis. Wadsworth, Belmont, CA

    Google Scholar 

  5. Tiefenthaler K, Lukosz W (1985) Grating couplers as integrated optical humidity and gas sensors. Thin Solid Films 126(3–4):205–211

    CrossRef  CAS  Google Scholar 

  6. Grattan KTV, Meggitt BT (1995) Optical fiber sensor technology, vol Vol. 1. Springer, Dordrecht

    CrossRef  Google Scholar 

  7. Grattan KTV, Sun T (2000) Fiber optic sensor technology: an overview. Sensors Actuat A Phys 82(1–3):40–61

    CrossRef  CAS  Google Scholar 

  8. Otsuki S, Adachi K, Taguchi T (1998) A novel fiber-optic gas sensing arrangement based on an air gap design and an application to optical detection of humidity. Anal Sci 14(3):633–635

    CrossRef  CAS  Google Scholar 

  9. Bedoya M, Díez MT, Moreno-Bondi MC, Orellana G (2006) Humidity sensing with a luminescent Ru (II) complex and phase-sensitive detection. Sensors Actuat B Chem 113(2):573–581

    CrossRef  CAS  Google Scholar 

  10. Posch HE, Wolfbeis OS (1988) Optical sensors, 13: fibre-optic humidity sensor based on fluorescence quenching. Sensors Actuat 15(1):77–83

    CrossRef  CAS  Google Scholar 

  11. Ogawa K, Tsuchiya S, Kawakami H, Tsutsui T (1988) Humidity-sensing effects of optical fibres with microporous SiO/sub 2/cladding. Electron Lett 24(1):42–43

    CrossRef  Google Scholar 

  12. Alvarez-Herrero A, Guerrero H, Levy D (2004) High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers. IEEE Sensors J 4(1):52–56

    CrossRef  Google Scholar 

  13. Kronenberg P, Rastogi PK, Giaccari P, Limberger HG (2002) Relative humidity sensor with optical fiber Bragg gratings. Opt Lett 27(16):1385–1387

    CrossRef  CAS  PubMed  Google Scholar 

  14. Luo S, Liu Y, Sucheta A, Evans MK, Van Tassell R (2002) Applications of LPG fiber optical sensors for relative humidity and chemical-warfare-agents monitoring. In: Advanced sensor systems and applications. International Society for Optics and Photonics, Bellingham, WA, pp 193–204

    CrossRef  Google Scholar 

  15. Venugopalan T, Yeo TL, Sun T, Grattan KTV (2008) LPG-based PVA coated sensor for relative humidity measurement. IEEE Sensors J 8(7):1093–1098

    CrossRef  Google Scholar 

  16. Yu H, Yao L, Wang LX, Hu WB, Jiang DS (2001) Fiber optic humidity sensor based on self-assembled polyelectrolyte multilayers. J Wuhan Technol Mater Sci Ed 16(3):65–69

    CAS  Google Scholar 

  17. Gauglitz G (1996) Opto-chemical and opto-immuno sensors. Sensors Update 1(1):1–48

    CrossRef  CAS  Google Scholar 

  18. Yeo TL, Sun T, Grattan KTV (2008) Fibre-optic sensor technologies for humidity and moisture measurement. Sensors Actuat A Phys 144(2):280–295

    CrossRef  CAS  Google Scholar 

  19. Choi MMF, Tse OL (1999) Humidity-sensitive optode membrane based on a fluorescent dye immobilized in gelatin film. Anal Chim Acta 378(1–3):127–134

    CrossRef  CAS  Google Scholar 

  20. Muto S, Suzuki O, Amano T, Morisawa M (2003) A plastic optical fibre sensor for real-time humidity monitoring. Meas Sci Technol 14(6):746

    CrossRef  CAS  Google Scholar 

  21. Dandridge A (1991) Fiber optic sensors based on the Mach-Zehnder and Michelson interferometers. Fiber Opt Sensors Introd Eng Sci:271–323

    Google Scholar 

  22. Ramakrishnan M, Rajan G, Semenova Y, Farrell G (2016) Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials. Sensors 16(1):99

    CrossRef  Google Scholar 

  23. Kapron FP, Keck DB, Maurer RD (1970) Radiation losses in glass optical waveguides. Appl Phys Lett 17(10):423–425

    CrossRef  Google Scholar 

  24. Wei W, Xiaotian S, Ying W (2015) Sapphire fiber-optic temperature sensor based on black-body radiation law. Procedia Eng 99:1179–1184

    CrossRef  Google Scholar 

  25. Masek V, Mojzes P, Palacky J, Bok J, Anzenbacher P (2010) Binding of platinum complexes to DNA monitored by Raman spectroscopy. In: AIP conference proceedings. AIP, New York, NY, pp 416–417

    Google Scholar 

  26. Guo Y, Xia W, Hu Z, Wang M (2017) High-temperature sensor instrumentation with a thin-film-based sapphire fiber. Appl Opt 56(8):2068–2073

    CrossRef  CAS  PubMed  Google Scholar 

  27. Pan B, Hao X, LI W, Zhou H (2011) Application of the SSPM in sapphire Fiber black-body cavity transient high temperature sensor. J North Univ China Nat Sci Ed 32(5):619–624

    CAS  Google Scholar 

  28. Wähmer M, Anhalt K, Hollandt J, Klein R, Taubert RD, Thornagel R et al (2017) Thermodynamic temperature of high-temperature fixed points traceable to blackbody radiation and synchrotron radiation. Int J Thermophys 38(10):144

    CrossRef  CAS  Google Scholar 

  29. Ogarev SA, Khlevnoi BB, Samoilov ML, Otryaskin DA, Grigor’eva IA, Solodilov MV et al (2016) High-temperature blackbody models for use in photometry, radiometry, and radiation thermometry. Meas Tech 58(11):1255–1260

    CrossRef  Google Scholar 

  30. Bolshov MA, Kuritsyn YA, Romanovskii YV (2015) Tunable diode laser spectroscopy as a technique for combustion diagnostics. Spectrochim Acta B 106:45–66

    CrossRef  CAS  Google Scholar 

  31. Mondanos M, Giles I, Weir K (2005) Fibre optic polarimetric temperature sensor using low coherence source employing intensity and wavelength compensation. In: 17th international conference on optical fibre sensors. International Society for Optics and Photonics, Bellingham WA, pp 647–650

    CrossRef  Google Scholar 

  32. Rao Y-J (2006) Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors. Opt Fiber Technol 12(3):227–237

    CrossRef  Google Scholar 

  33. Lee BH, Kim YH, Park KS, Eom JB, Kim MJ, Rho BS et al (2012) Interferometric fiber optic sensors. Sensors 12(3):2467–2486

    CrossRef  PubMed  Google Scholar 

  34. Udd E, Spillman Jr WB (2011) Fiber optic sensors: an introduction for engineers and scientists. Wiley, Hoboken, NJ

    CrossRef  Google Scholar 

  35. Liu T, Wu M, Rao Y, Jackson DA, Fernando GF (1998) A multiplexed optical fibre-based extrinsic Fabry-Perot sensor system for in-situ strain monitoring in composites. Smart Mater Struct 7(4):550

    CrossRef  Google Scholar 

  36. Chen C (2009) Sensing characteristics of core and cladding modes in conventional single mode fibre and photonic crystal fibre. Carleton University, Ottawa

    CrossRef  Google Scholar 

  37. Li L, Xia L, Xie Z, Hao L, Shuai B, Liu D (2012) In-line fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber. Sensors Actuat A Phys 180:19–24

    CrossRef  CAS  Google Scholar 

  38. Xiong R, Meng H, Yao Q, Huang B, Liu Y, Xue H et al (2014) Simultaneous measurement of refractive index and temperature based on modal interference. IEEE Sensors J 14(8):2524–2528

    CrossRef  Google Scholar 

  39. Li E, Wang X, Zhang C (2006) Fiber-optic temperature sensor based on interference of selective higher-order modes. Appl Phys Lett 89(9):91119

    CrossRef  CAS  Google Scholar 

  40. Liu Y, Wei L (2007) Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers. Appl Opt 46(13):2516–2519

    CrossRef  PubMed  Google Scholar 

  41. Wei T, Lan X, Xiao H (2009) Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations. IEEE Photon Technol Lett 21(10):669–671

    CrossRef  CAS  Google Scholar 

  42. Martelli C, Mendez A, Triques ALC, Braga AMB, Canning J, Cook K et al (2011) Impact of hydrogen-induced effects on optical fiber Bragg gratings. In: 21st international conference on optical fiber sensors. International Society for Optics and Photonics, Bellingham, p 775385

    CrossRef  Google Scholar 

  43. Lowder TL, Smith KH, Ipson BL, Hawkins AR, Selfridge RH, Schultz SM (2005) High-temperature sensing using surface relief fiber Bragg gratings. IEEE Photon Technol Lett 17(9):1926–1928

    CrossRef  CAS  Google Scholar 

  44. Guo T, Liu F, Guan B-O, Albert J (2016) Tilted fiber grating mechanical and biochemical sensors. Opt Laser Technol 78:19–33

    CrossRef  CAS  Google Scholar 

  45. Erdogan T, Mizrahi V, Lemaire PJ, Monroe D (1994) Decay of ultraviolet-induced fiber Bragg gratings. J Appl Phys 76(1):73–80

    CrossRef  Google Scholar 

  46. Rathje J, Kristensen M, Pedersen JE (2000) Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings. J Appl Phys 88(2):1050–1055

    CrossRef  CAS  Google Scholar 

  47. Vengsarkar AM, Lemaire PJ, Judkins JB, Bhatia V, Erdogan T, Sipe JE (1996) Long-period fiber gratings as band-rejection filters. J Lightwave Technol 14(1):58–65

    CrossRef  Google Scholar 

  48. Shima K, Himeno K, Sakai T, Okude S, Wada A, Yamauchi R (1997) A novel temperature-insensitive long-period fiber grating using a boron-codoped-germanosilicate-core fiber. In: Proceedings of optical fiber communication conference. IEEE, Dallas, TX, pp 347–348

    CrossRef  Google Scholar 

  49. Chan C-F, Chen C, Jafari A, Laronche A, Thomson DJ, Albert J (2007) Optical fiber refractometer using narrowband cladding-mode resonance shifts. Appl Opt 46(7):1142–1149

    CrossRef  PubMed  Google Scholar 

  50. Alberto NJ, Marques CA, Pinto JL, Nogueira RN (2010) Three-parameter optical fiber sensor based on a tilted fiber Bragg grating. Appl Opt 49(31):6085–6091

    CrossRef  Google Scholar 

  51. Shevchenko YY, Albert J (2007) Plasmon resonances in gold-coated tilted fiber Bragg gratings. Opt Lett 32(3):211–213

    CrossRef  CAS  PubMed  Google Scholar 

  52. Wong ACL, Chung WH, Tam H-Y, Lu C (2011) Single tilted Bragg reflector fiber laser for simultaneous sensing of refractive index and temperature. Opt Express 19(2):409–414

    CrossRef  CAS  PubMed  Google Scholar 

  53. Zhou B, Zhang AP, He S, Gu B (2010) Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section. IEEE Photon J 2(2):152–157

    CrossRef  Google Scholar 

  54. Villanueva GE, Jakubinek MB, Simard B, Oton CJ, Matres J, Shao L-Y et al (2011) Linear and nonlinear optical properties of carbon nanotube-coated single-mode optical fiber gratings. Opt Lett 36(11):2104–2106

    CrossRef  CAS  PubMed  Google Scholar 

  55. Laffont G, Ferdinand P (2001) Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry. Meas Sci Technol 12(7):765

    CrossRef  CAS  Google Scholar 

  56. Erdogan T, Sipe JE (1996) Tilted fiber phase gratings. JOSA A 13(2):296–313

    CrossRef  CAS  Google Scholar 

  57. Lamb JJ, Bernard O, Sarker S, Lien KM, Hjelme DR (2019) Perspectives of surface plasmon resonance sensors for optimized biogas methanation. Eng Life Sci 19:759–769

    Google Scholar 

  58. Chen C, Yu Y-S, Yang R, Wang C, Guo J-C, Xue Y et al (2012) Reflective optical fiber sensors based on tilted fiber Bragg gratings fabricated with femtosecond laser. J Lightwave Technol 31(3):455–460

    CrossRef  Google Scholar 

  59. Qiu L, Goossen KW, Heider D, O’Brien DJ, Wetzel ED (2010) Nonpigtail optical coupling to embedded fiber Bragg grating sensors. Opt Eng 49(5):54402

    CrossRef  Google Scholar 

  60. Chojetzki C, Rothhardt MW, Ommer J, Unger S, Schuster K, Mueller H-R (2005) High-reflectivity draw-tower fiber Bragg gratings—arrays and single gratings of type II. Opt Eng 44(6):60503

    CrossRef  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the ENERSENSE programme and NTNU Team Hydrogen at the Norwegian University of Science and Technology (NTNU) for supporting and helping on this book project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob J. Lamb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wahl, M.S., Muri, H.I., Snilsberg, R.K., Lamb, J.J., Hjelme, D.R. (2020). Temperature and Humidity Measurements. In: Lamb, J., Pollet, B. (eds) Micro-Optics and Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-43676-6_3

Download citation