Skip to main content

Hydrogen and Biogas

  • Chapter
  • First Online:
Micro-Optics and Energy

Abstract

Among the renewable energy sources that are essential to face challenges such as climate change and energy depletion, biogas has become one of the attractive pathways in recent years [1]. Biogas derives from the natural degradation of organic materials by microorganism anaerobic digestion. These organic materials come from waste feedstocks considered as renewable sources since the rejection of waste is continual. On top of being a renewable substitute for fossil fuels, biogas helps in waste management. In this way, agricultural and industrial residues, municipal organic wastes, and sewage sludge are common sources of feedstock including seeds, grains, and sugars, lignocellulosic biomass like crop residues and woody crops, or algae with their high carbohydrate content [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scarlat N, Dallemand J-F, Fahl F (2018) Biogas: developments and perspectives in Europe. Renew Energy 129(A):457–472

    Article  Google Scholar 

  2. Sarker S, Lamb JJ, Hjelme DR, Lien KM (2018) Overview of recent progress towards in-situ biogas upgradation techniques. Fuel 226:686–697

    Google Scholar 

  3. Sarker S, Lamb JJ, Hjelme DR, Lien KM (2019) A review of the role of critical parameters in the design and operation of biogas production plants. Appl Sci 9(9):1915

    Google Scholar 

  4. Lamb JJ, Sarker S, Hjelme DR, Lien KM (2018) Fermentative bioethanol production using enzymatically hydrolysed Saccharina latissima. Adv Microbiol 8:378

    Google Scholar 

  5. Lamb JJ, Hjelme DR, Lien KM (2019) Carbohydrate yield and biomethane potential from enzymatically hydrolysed Saccharina latissima and its industrial potential. Adv Microbiol 9(4):359–371

    Google Scholar 

  6. Gaoa Y et al (2018) A review of recent developments in hydrogen production via biogas dry reforming. Energy Convers Manag 171:133–155

    Article  Google Scholar 

  7. Patinvoh RJ et al (2017) Innovative pretreatment strategies for biogas production. Bioresour Technol 224:13–24

    Article  CAS  Google Scholar 

  8. Alves HJ et al (2013) Overview of hydrogen production technologies from biogas. Int J Hydrogen Energy 38:5215

    Article  CAS  Google Scholar 

  9. Sun Q et al (2015) Selection of appropriate biogas upgrading technology—a review of biogas cleaning, upgrading and utilization. Renew Sustain Energy Rev 51:521–532

    Article  CAS  Google Scholar 

  10. Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35:1633–1645

    Article  CAS  Google Scholar 

  11. Surendra KC et al (2014) Biogas as a sustainable energy source for developing countries: opportunities and challenges. Renew Sustain Energy Rev 31:846–859

    Article  Google Scholar 

  12. Khan MI, Yasmin T, Shakoor A (2015) Technical overview of compressed natural gas (CNG) as a transportation fuel. Renew Sustain Energy Rev 51:785–797

    Article  CAS  Google Scholar 

  13. Shanmugam K, Tysklind M, Upadhyayula VKK (2018) Use of liquefied biomethane (LBM) as a vehicle fuel for road freight transportation: a case study evaluating environmental performance of using LBM for operation of tractor trailers. Proc CIRP 69:517–522

    Article  Google Scholar 

  14. Budzianowski WM (2016) A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment. Renew Sustain Energy Rev 54:1148–1171

    Article  Google Scholar 

  15. Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sustain Energy Rev 67:597–611

    Article  CAS  Google Scholar 

  16. Acar C, Dincer I (2019) Review and evaluation of hydrogen production options for better environment. J Cleaner Prod 218(1):835–849

    Article  CAS  Google Scholar 

  17. Di Marcoberardino G et al (2018) Potentiality of a biogas membrane reformer for decentralized hydrogen production. Chem Eng Process Process Intensif 129:131–141

    Article  Google Scholar 

  18. Nawfal M (2015) Valorisation catalytique du biogaz pour une énergie propre et renouvelable. Catalyse

    Google Scholar 

  19. Nahar G, Mote D, Dupont V (2017) Hydrogen production from reforming of biogas: review of technological advances and an Indian perspective. Renew Sustain Energy Rev 76:1032–1052

    Article  CAS  Google Scholar 

  20. Cruz PL et al (2018) Exergy analysis of hydrogen production via biogas dry reforming. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2018.02.025

  21. Noh YS, Lee K-Y, Moon DJ (2019) Hydrogen production by steam reforming of methane over nickel based structured catalysts supported on calcium aluminate modified SiC. Int J Hydrogen Energy 44(38):21010–21019

    Article  CAS  Google Scholar 

  22. Rau F et al (2018) Efficiency of a pilot-plant for the autothermal reforming of biogas. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2018.04.014

  23. Battista F et al (2017) LCA evaluation for the hydrogen production from biogas through the innovative BioRobur project concept. Int J Hydrogen Energy 42:14030–14043

    Article  CAS  Google Scholar 

  24. Braga LB et al (2013) Hydrogen production by biogas steam reforming: a technical, economic and ecological analysis. Renew Sustain Energy Rev 28:166–173

    Google Scholar 

  25. Durán P et al (2019) Pure hydrogen from biogas: intensified methane dry reforming in a two-zone fluidized bed reactor using permselective membranes. Chem Eng J 370:772–781

    Article  Google Scholar 

  26. Fernandez E et al (2015) Development of thin Pd-Ag supported membranes for fluidized bed membrane reactors including WGS related gases. Int J Hydrogen Energy 40(8):3506–3519

    Article  CAS  Google Scholar 

  27. Leonzio G (2019) ANOVA analysis of an integrated membrane reactor for hydrogen production by methane steam reforming. Int J Hydrogen Energy 44(23):11535–11545

    Article  CAS  Google Scholar 

  28. Junaedi C et al (2012) Development of integrated reformer systems for syngas production. Int J Hydrogen Energy 37(13):10435–10443

    Article  CAS  Google Scholar 

  29. Götz M et al (2016) Renewable power-to-gas: a technological and economic review. Renew Energy 85:1371–1390

    Article  Google Scholar 

  30. Enerdata, Global Energy Statistical Yearbook 2018. Accessed 10 June 2019. https://yearbook.enerdata.net

  31. Bailera M et al (2017) Power to gas projects review: lab, pilot and demo plants for storing renewable energy and CO2. Renew Sustain Energy Rev 69:292–312

    Article  CAS  Google Scholar 

  32. Lund PD et al (2015) Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew Sustain Energy Rev 45:785–807

    Article  Google Scholar 

  33. Mahlia TMI et al (2014) A review of available methods and development on energy storage; technology update. Renew Sustain Energy Rev 33:532–545

    Article  Google Scholar 

  34. Burheim OS (2017) Engineering energy storage. Elsevier, London

    Google Scholar 

  35. Ghaib K, Ben-Fares F-Z (2018) Power-to-methane: a state-of-the-art review. Renew Sustain Energy Rev 81:433–446

    Article  CAS  Google Scholar 

  36. Pääkkönen A, Tolvanen H, Rintala J (2018) Techno-economic analysis of a power to biogas system operated based on fluctuating electricity price. Renew Energy 117:166–174

    Article  Google Scholar 

  37. Dolci F et al (2019) Incentives and legal barriers for power-to-hydrogen pathways: an international snapshot. Int J Hydrogen. https://doi.org/10.1016/j.ijhydene.2019.03.045

  38. Gondal IA (2019) Hydrogen integration in power-to-gas networks. Int J Hydrogen Energy 44(3):1803–1815

    Article  CAS  Google Scholar 

  39. Stangeland K et al (2017) CO2 methanation: the effect of catalysts and reaction conditions. Energy Proc 105:2022–2027

    Article  CAS  Google Scholar 

  40. Jürgensen L et al (2015) Dynamic biogas upgrading based on the Sabatier process: thermodynamic and dynamic process simulation. Bioresour Technol 178:323–329

    Article  Google Scholar 

  41. Er-rbib H, Bouallou C (2014) Methanation catalytic reactor. Comptes Rendus Chimie 17(7–8):701–706

    Article  CAS  Google Scholar 

  42. Rönsch S et al (2016) Review on methanation—from fundamentals to current projects. Fuel 166:276–296

    Article  Google Scholar 

  43. Lefebvre J et al (2015) Improvement of three-phase methanation reactor performance for steady-state and transient operation. Fuel Process Technol 132:83–90

    Article  CAS  Google Scholar 

  44. Kreitz B, Wehinger GD, Turek T (2019) Dynamic simulation of the CO2 methanation in a micro-structured fixed-bed reactor. Chem Eng Sci 195:541–552

    Article  CAS  Google Scholar 

  45. Lecker B et al (2017) Biological hydrogen methanation—a review. Bioresour Technol 245(Pt A):1220–1228

    Google Scholar 

  46. Mazza A, Bompard E, Chicco G (2018) Applications of power to gas technologies in emerging electrical systems. Renew Sustain Energy Rev 92:794–806

    Article  CAS  Google Scholar 

  47. David M, Ocampo-Martínez C, Sánchez-Peña R (2019) Advances in alkaline water electrolyzers: a review. J. Energy Storage 23:392–403

    Article  Google Scholar 

  48. Curto D, Martín M (2019) Renewable based biogas upgrading. J Cleaner Prod 224:50–59

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the ENERSENSE programme and NTNU Team Hydrogen at the Norwegian University of Science and Technology (NTNU) for supporting and helping on this book project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob J. Lamb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gregorie, E.F.J., Lamb, J.J., Lien, K.M., Pollet, B.G., Burheim, O.S. (2020). Hydrogen and Biogas. In: Lamb, J., Pollet, B. (eds) Micro-Optics and Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-43676-6_10

Download citation

Publish with us

Policies and ethics