Skip to main content

Free Radical Scavenger Activity and P-glycoprotein Inhibition Capacity of 1,2,4-Trihydroxyxanthone

  • Conference paper
  • First Online:
  • 384 Accesses

Part of the book series: Learning and Analytics in Intelligent Systems ((LAIS,volume 11))

Abstract

Some xanthone derivatives isolated from plants possess antifungal, antimicrobial, antioxidative and cytotoxic activities. Therefore, products manufactured from plants that contain xanthones are used as botanical dietary supplements. The operative mechanism of antioxidative action of 1,2,4-trihydroxyxanthone is investigated in this contribution. For this purpose, M06-2X/6-311++G(d,p) method is used. Antioxidative capacity of investigated xanthone is determined in benzene and water as mediums. It is found that, among three possible radicals that this xanthone can generate, the most stable is the one obtained by homolytic cleavage of O-H group in position 4. It was found that HAT (Hydrogen Atom Transfer) is the only operative mechanism for xanthone in benzene. On the other hand, the most favorable mechanism in water is SPLET (Sequential Proton Loss Electron Transfer). It should be emphasized that SET-PT (Single-Electron Transfer followed by Proton Transfer) is not plausible mechanistic pathway in both solvents. Antioxidants express their scavenger capacity in the presence of free radicals. Therefore here is examined scavenger capacity of 1,2,4-trihydroxyxanthone toward HO\( ^{\bullet}\), HOO\( ^{\bullet}\) and CH3OO\( ^{\bullet}\) radicals. It is found that the investigated xanthone is able to deactivate free radicals via competitive HAT and SPLET mechanisms. The observed reactivity of the xanthone toward free radicals decreases following the order: HO\( ^{\bullet}\) ≫ HOO\( ^{\bullet}\) > CH3OO\( ^{\bullet}\). It should be pointed out that reactivity of the xanthone to selected free radicals slightly increases with an increase in solvent polarity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Percival, M.: Antioxidants-a review. Clin. Nutr. Insights 31, 201–205 (1998)

    Google Scholar 

  2. Jung, H.A., Su, B.N., Keller, W.J., Mehta, R.G., Kinghorn, A.D.: Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen). J. Agric. Food Chem. 54(6), 2077–2082 (2006)

    Article  Google Scholar 

  3. Chase, M., et al.: An update of the Angiosperm Phylogeny Group classification for the orders and families offlowering plants: APG II. Bot. J. Linn. Soc. 141(4), 399–436 (2003)

    Article  Google Scholar 

  4. Donnenberg, V., Donnenberg, A.: Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J. Clin. Pharmacol. 45(8), 872–877 (2005)

    Article  Google Scholar 

  5. Marković, Z.: Study of the mechanisms of antioxidative action of different antioxidants. J. Serb. Soc. Comput. Mech. 10(1), 135–150 (2016)

    Article  Google Scholar 

  6. Galano, A., Mazzone, G., Alvarez-Diduk, R., Marino, T., Alvarez-Idaboy, R., Russo, N.: Food antioxidants: chemical insights at the molecular level. Annu. Rev. Food Sci. Technol. 7, 335–352 (2016)

    Article  Google Scholar 

  7. Knight, J.A.: Review: free radicals, antioxidants, and the immune system. Ann. Clin. Lab. Sci. 30(2), 145–158 (2000)

    Google Scholar 

  8. Yoshida, Y., Umeno, A., Shichiri, M.: Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity in vivo. J. Clin. Biochem. Nutr. 52(1), 9–16 (2013)

    Article  Google Scholar 

  9. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.J., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, A.D., Rabuck, K.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S., Pople, J.A.: Gaussian 09, Revision B.01. Gaussian Inc., Wallingford (2009)

    Google Scholar 

  10. Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoret. Chem. Acc. 120(1), 215–241 (2008)

    Article  Google Scholar 

  11. Takano, Y., Houk, K.N.: Benchmarking the Conductor-like Polarizable Continuum Model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J. Chem. Theory Comput. 1(1), 70–77 (2005)

    Article  Google Scholar 

  12. Tošović, J., Marković, S., Milenković, D., Marković, Z.: Solvation enthalpies and Gibbs energies of the proton and electron – influence of solvation models. J. Serb. Soc. Comput. Mech. 10(2), 66–76 (2016)

    Article  Google Scholar 

  13. Aller, S., Yu, J., Ward, A., Weng, Y., Chittaboina, S., Zhuo, R., Harrell, P., Trinh, Y., Zhang, Q., Urbatsch, I., Chang, G.: Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323(5922), 1718–1722 (2009)

    Article  Google Scholar 

  14. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996)

    Article  Google Scholar 

  15. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J.: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009)

    Article  Google Scholar 

  16. Fuhrmann, J., Rurainski, A., Lenhof, H.P., Neumann, D.: A new Lamarckian genetic algorithm for flexible ligand-receptor docking. J. Comput. Chem. 31(9), 1911–1918 (2010)

    Google Scholar 

  17. BIOVIA Discovery Studio (2016). http://accelrys.com/products/collaborative-science/biovia-discovery-studio/. Accessed 07 May 2016

  18. Marković, Z., Marković, S., Dimitrić Marković, J., Milenković, D.: Structure and reactivity of baicalein radical cation. Int. J. Quant. Chem. 112(8), 2009–2017 (2012)

    Article  Google Scholar 

  19. Marković, Z., Jeremić, S., Dimitrić Marković, J., Stanojević Pirković, M., Amić, D.: Influence of structural characteristics of substituents on the antioxidant activity of some anthraquinone derivatives. Comput. Theor. Chem. 1077, 25–31 (2016)

    Article  Google Scholar 

  20. Jeremić, S., Šehović, S., Manojlović, N., Marković, Z.: Antioxidant and free radical scavenging activity of purpurin. Monatshefte für Chemie - Chemical Monthly 143(3), 427–435 (2012)

    Article  Google Scholar 

  21. Jeremić, S., Filipović, N., Peulić, A., Marković, Z.: Thermodynamical aspect of radical scavenging activity of alizarin and alizarin red S. Theoretical comparative study. Comput. Theor. Chem. 1047, 15–21 (2014)

    Article  Google Scholar 

  22. Reed, A.E., Curtiss, L.A., Weinhold, F.: Intermolecular interactions from a natural bond orbital donor-acceptor viewpoint. Chem. Rev. 88(6), 899–926 (1988)

    Article  Google Scholar 

  23. Sharom, F.J.: ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 9(1), 105–127 (2008)

    Article  Google Scholar 

  24. Loe, D.W., Deeley, R.G., Cole, S.P.C.: Biology of the multidrug resistance-associated protein, MRP. Eur. J. Cancer 32(6), 945–957 (1996)

    Article  Google Scholar 

  25. Jeremić, S., Amić, A., Stanojević-Pirković, M., Marković, Z.: Selected anthraquinones as potential free radical scavengers and P-glycoprotein inhibitors. Org. Biomol. Chem. 16(11), 1890–1902 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Projects No. 172015 and 174028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Jeremić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jeremić, S., Marković, Z. (2020). Free Radical Scavenger Activity and P-glycoprotein Inhibition Capacity of 1,2,4-Trihydroxyxanthone. In: Filipovic, N. (eds) Computational Bioengineering and Bioinformatics. ICCB 2019. Learning and Analytics in Intelligent Systems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-43658-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43658-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43657-5

  • Online ISBN: 978-3-030-43658-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics