Investigation of Coumarin Derivative 3-(1-o-toluidinoethylidene)-chromane-2,4-dione: IR Spectroscopic Characterization, NBO, and AIM Analysis and Molecular Docking Studies

Conference paper
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 11)


Various derivatives of coumarin have previously shown a wide range of biological activities. In this contribution, 3-(1-o-toluidinoethylidene)-chromane-2,4-dione (1) was analyzed by various theoretical techniques in order to understand the potential binding to anti-tumor target agents. The experimental IR spectrum was assigned and compared to theoretical in order to verify the applicability of applied DFT level of theory (B3LYP-D3BJH/6-311+G(d,p)). The Hirshfeld surface analysis (HSA) performed on the crystal structure of title compound allowed the analysis of inter-atomic interactions that lead to the crystal formation. The Natural Bond Orbital (NBO) and Quantum Theory of Atoms in Molecules (QTAIM) gave in-depth insight of the interactions governing the structure of molecule. Molecular docking towards UQCRB protein was used to investigate the possible interactions with proteins. The stability of molecules and various reactive positions make it a potential anti-tumor agent and further experimental studies are needed.



This study is supported by the grants from the Ministry of Education, Science and Technological Development of the Republic of Serbia through grants OI172016, OI172015, OI172040, and OI174028.


  1. 1.
    Abernethy, J.L.: The historical and current interest in coumarin. J. Chem. Educ. 46(9), 561 (1969)CrossRefGoogle Scholar
  2. 2.
    Murray, R.D.H.: Naturally occurring plant coumarins, pp. 1–119 (1997)Google Scholar
  3. 3.
    Murray, R.D.H.: Naturally occurring plant coumarins, pp. 199–429. Springer, Vienna (1997)Google Scholar
  4. 4.
    Atta-ur-Rahman, Shabbir, M., Ziauddin Sultani, S., Jabbar, A., Iqbal Choudhary, M.: Cinnamates and coumarins from the leaves of Murraya paniculata. Phytochemistry 44(4), 683–685 (1997)CrossRefGoogle Scholar
  5. 5.
    Erdelmeier, C., Sticher, O.: Coumarin derivatives from Eryngium campestre. Planta Med. 51(05), 407–409 (1985)CrossRefGoogle Scholar
  6. 6.
    Dandriyal, J., Singla, R., Kumar, M., Jaitak, V.: Recent developments of C-4 substituted coumarin derivatives as anticancer agents. Eur. J. Med. Chem. 119, 141–168 (2016)CrossRefGoogle Scholar
  7. 7.
    Magadula, J.J., et al.: Mammea-type coumarins from Mammea usambarensis Verdc. Biochem. Syst. Ecol. 56, 65–67 (2014)CrossRefGoogle Scholar
  8. 8.
    Ojala, T., et al.: Antimicrobial activity of some coumarin containing herbal plants growing in Finland. J. Ethnopharmacol. 73(1–2), 299–305 (2000)CrossRefGoogle Scholar
  9. 9.
    Cottigli, F., et al.: Antimicrobial evaluation of coumarins and flavonoids from the stems of Daphne gnidium L. Phytomedicine 8(4), 302–305 (2001)CrossRefGoogle Scholar
  10. 10.
    Rosselli, S., et al.: The cytotoxic properties of natural coumarins isolated from roots of Ferulago campestris (Apiaceae) and of synthetic ester derivatives of aegelinol. Nat. Prod. Commun. 4(12), 1701–1706 (2009)Google Scholar
  11. 11.
    Hodák, K., Jakesová, V., Dadák, V.: On the antibiotic effects of natural coumarins. VI. The relation of structure to the antibacterial effects of some natural coumarins and the neutralization of such effects. Cesk. Farm. 16(2), 86–91 (1967)Google Scholar
  12. 12.
    Cravotto, G., Nano, G.M., Palmisano, G., Tagliapietra, S.: An asymmetric approach to coumarin anticoagulants via hetero-Diels–Alder cycloaddition. Tetrahedron Asymmetry 12(5), 707–709 (2001)CrossRefGoogle Scholar
  13. 13.
    Velasco-Velázquez, M.A., et al.: 4-hydroxycoumarin disorganizes the actin cytoskeleton in B16–F10 melanoma cells but not in B82 fibroblasts, decreasing their adhesion to extracellular matrix proteins and motility. Cancer Lett. 198(2), 179–186 (2003)CrossRefGoogle Scholar
  14. 14.
    Al-Ayed, A., Hamdi, N.: A new and efficient method for the synthesis of novel 3-Acetyl coumarins oxadiazoles derivatives with expected biological activity. Molecules 19(1), 911–924 (2014)CrossRefGoogle Scholar
  15. 15.
    Morrison, S.A., Esnouf, M.P.: The nature of the heterogeneity of prothrombin during dicoumarol therapy. Nat. New Biol. 242(116), 92–94 (1973)CrossRefGoogle Scholar
  16. 16.
    Salinas-Jazmín, N., de la Fuente, M., Jaimez, R., Pérez-Tapia, M., Pérez-Torres, A., Velasco-Velázquez, M.A.: Antimetastatic, antineoplastic, and toxic effects of 4-hydroxycoumarin in a preclinical mouse melanoma model. Cancer Chemother. Pharmacol. 65(5), 931–940 (2010)CrossRefGoogle Scholar
  17. 17.
    Egan, D., James, P., Cooke, D., O’Kennedy, R.: Studies on the cytostatic and cytotoxic effects and mode of action of 8-nitro-7-hydroxycoumarin. Cancer Lett. 118(2), 201–211 (1997)CrossRefGoogle Scholar
  18. 18.
    Finn, G., Creaven, B., Egan, D.: Modulation of mitogen-activated protein kinases by 6-nitro-7-hydroxycoumarin mediates apoptosis in renal carcinoma cells. Eur. J. Pharmacol. 481(2–3), 159–167 (2003)CrossRefGoogle Scholar
  19. 19.
    Joao Matos, M., Vina, D., Vazquez-Rodriguez, S., Uriarte, E., Santana, L.: Focusing on new monoamine oxidase inhibitors: differently substituted coumarins as an interesting scaffold. Curr. Top. Med. Chem. 12(20), 2210–2239 (2012)CrossRefGoogle Scholar
  20. 20.
    Pingaew, R., et al.: Synthesis, biological evaluation and molecular docking of novel chalcone–coumarin hybrids as anticancer and antimalarial agents. Eur. J. Med. Chem. 85, 65–76 (2014)CrossRefGoogle Scholar
  21. 21.
    Liu, X.-H., et al.: Synthesis and molecular docking study of novel coumarin derivatives containing 4,5-dihydropyrazole moiety as potential antitumor agents. Bioorg. Med. Chem. Lett. 20, 5705–5708 (2010)CrossRefGoogle Scholar
  22. 22.
    Cho, Y.S., Jung, H.J., Seok, S.H., Payumo, A.Y., Chen, J.K., Kwon, H.J.: Functional inhibition of UQCRB suppresses angiogenesis in zebrafish. Biochem. Biophys. Res. Commun. 433(4), 396–400 (2013)CrossRefGoogle Scholar
  23. 23.
    Sun, Y., et al.: Identification of UQCRB as an oxymatrine recognizing protein using a T7 phage display screen. J. Ethnopharmacol. 193, 133–139 (2016)CrossRefGoogle Scholar
  24. 24.
    Jung, H.J., Kwon, H.J.: Exploring the role of mitochondrial UQCRB in angiogenesis using small molecules. Mol. BioSyst. 9(5), 930 (2013)CrossRefGoogle Scholar
  25. 25.
    Jung, H.J., Kim, Y., Chang, J., Kang, S.W., Kim, J.H., Kwon, H.J.: Mitochondrial UQCRB regulates VEGFR2 signaling in endothelial cells. J. Mol. Med. 91(9), 1117–1128 (2013)CrossRefGoogle Scholar
  26. 26.
    Dimić, D.S., et al.: Synthesis and characterization of 3-(1-((3,4-dihydroxyphenethyl)amino)ethylidene)-chroman-2,4-dione as potential anti-tumor agent. Oxid. Med. Cell. Longev. 2019 (2019). Article ID 2069250Google Scholar
  27. 27.
    Avdović, E.H., et al.: Synthesis, spectroscopic characterization (FT-IR, FT-Raman, and NMR), quantum chemical studies and molecular docking of 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 195, 31–40 (2018)CrossRefGoogle Scholar
  28. 28.
    Avdović, E.H., et al.: Preparation and antimicrobial activity of a new palladium(II) complexes with a coumarin-derived ligands. Crystal structures of the 3-(1-(o-toluidino)ethylidene)-chroman-2,4-dione and 3-(1-(m-toluidino) ethylidene)-chroman-2,4-dione. Inorganica Chim. Acta 484, 52–59 (2019)CrossRefGoogle Scholar
  29. 29.
    Avdović, E.H., et al.: Spectroscopic and theoretical investigation of the potential anti-tumor and anti-microbial agent, 3-(1-((2-hydroxyphenyl)amino)ethylidene)chroman-2,4-dione. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 206, 421–429 (2019)CrossRefGoogle Scholar
  30. 30.
    Avdović, E.H., Milenković, D., Dimitrić-Marković, J.M., Vuković, N., Trifunović, S.R., Marković, Z.: Structural, spectral and NBO analysis of 3-(1-(3-hydroxypropylamino)ethylidene)chroman-2,4-dione. J. Mol. Struct. 1147, 69–75 (2017)CrossRefGoogle Scholar
  31. 31.
    Avdović, E.H., et al.: Synthesis, characterization and cytotoxicity of a new palladium(II) complex with a coumarin-derived ligand 3-(1-(3-hydroxypropylamino)ethylidene)chroman-2,4-dione. Crystal structure of the 3-(1-(3-hydroxypropylamino)ethylidene)-chroman-2,4-dione. Inorganica Chim. Acta 466, 188–196 (2017)CrossRefGoogle Scholar
  32. 32.
    Turner, M.J., McKinnon, J.J., Wolff, S. K., Grimwood, D.J., Spackman, P.R., Jayatilaka, D., Spackman, M.A.: CrystalExplorer17. University of Western Australia (2017)Google Scholar
  33. 33.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.J., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, A.D., Rabuck, K.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., AlLaham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., HeadGordon, M., Replogle, E.S., Pople, J.A.: Gaussian 09, Revision B.01. Gaussian Inc., Wallingford (2009)Google Scholar
  34. 34.
    Bader, R.F.W.: A bond path: a universal indicator of bonded interactions. J. Phys. Chem. A 102, 7314–7323 (1998)CrossRefGoogle Scholar
  35. 35.
    Bader, R.F.W.: Atoms in molecules. Acc. Chem. Res. 18(1), 9–15 (1985)CrossRefGoogle Scholar
  36. 36.
    Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Weinhold, F.: NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison (2001)Google Scholar
  37. 37.
    Morris, G.M., et al.: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009)CrossRefGoogle Scholar
  38. 38.
    Milenković, D., et al.: Reactivity of the coumarine derivative towards cartilage proteins: combined NBO, QTAIM, and molecular docking study. Monatshefte fur Chemie 149, 159–166 (2017)CrossRefGoogle Scholar
  39. 39.
    Dimić, D., et al.: Experimental and theoretical elucidation of structural and antioxidant properties of vanillylmandelic acid and its carboxylate anion. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 198, 61–70 (2018)CrossRefGoogle Scholar
  40. 40.
    Dimić, D., Milenković, D., Marković, Z., Marković, J.D.: Structural and spectral analysis of 3-metoxytyramine, an important metabolite of dopamine. J. Mol. Struct. 1134, 226–236 (2017)CrossRefGoogle Scholar
  41. 41.
    BIOVIA Discovery Studio 2016. Accelrys Studio Inc., San Diego (2016)Google Scholar
  42. 42.
    Gilli, G., Bellucci, F., Ferretti, V., Bertolasi, V.: Evidence for resonance-assisted hydrogen bonding from crystal-structure correlations on the enol form of the β-diketone fragment. J. Am. Chem. Soc. 111, 1023–1028 (1989)CrossRefGoogle Scholar
  43. 43.
    Spackman, M.A., Byrom, P.G.: A novel definition of a molecule in a crystal. Chem. Phys. Lett. 267(3–4), 215–220 (1997)CrossRefGoogle Scholar
  44. 44.
    Spackman, M.A., Jayatilaka, D.: Hirshfeld surface analysis. CrystEngComm 11(1), 19–32 (2009)CrossRefGoogle Scholar
  45. 45.
    Grabowsky, S., Dean, P.M., Skelton, B.W., Sobolev, A.N., Spackman, M.A., White, A.H.: Crystal packing in the 2-R,4-oxo-[1,3-a/b]-naphthodioxanes – hirshfeld surface analysis and melting point correlation. CrystEngComm 14(3), 1083–1093 (2012)CrossRefGoogle Scholar
  46. 46.
    Dimić, D., Petković, M.: Control of a photoswitching chelator by metal ions: DFT, NBO, and QTAIM analysis. Int. J. Quantum Chem. 116, 27–34 (2015)CrossRefGoogle Scholar
  47. 47.
    Dimić, D.: The importance of specific solvent–solute interactions for studying UV–vis spectra of light-responsive molecular switches. Comptes Rendus Chim. 21(11), 1001–1010 (2018)CrossRefGoogle Scholar
  48. 48.
    Khurana, N., Ishar, M.P.S., Gajbhiye, A., Goel, R.K.: PASS assisted prediction and pharmacological evaluation of novel nicotinic analogs for nootropic activity in mice. Eur. J. Pharmacol. 662(1–3), 22–30 (2011)CrossRefGoogle Scholar
  49. 49.
    Goel, R.K., Singh, D., Lagunin, A., Poroikov, V.: PASS-assisted exploration of new therapeutic potential of natural products. Med. Chem. Res. 20(9), 1509–1514 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Information Technologies, Department of ScienceUniversity of KragujevacKragujevacSerbia
  2. 2.Faculty of Physical ChemistryUniversity of BelgradeBelgradeSerbia

Personalised recommendations