Skip to main content

Partitioned Coupling Schemes for Free-Flow and Porous-Media Applications with Sharp Interfaces

  • Conference paper
  • First Online:
Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (FVCA 2020)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 323))

Included in the following conference series:

Abstract

We investigate a partitioned coupling scheme applied to a system of free flow over a porous medium. The coupling scheme follows a partitioned approach which means that the flow fields in the two domains are solved separately and information is exchanged over the sharp interface that separates the free-flow and the porous-medium domain. Technically, the coupling is realized via the open-source library preCICE, employing a pure black-box approach such that different solver frameworks can be used with highly specialized solvers in each of the flow domains. We investigate the partitioned coupling approach numerically by comparing it to a monolithic coupling scheme with respect to convergence and accuracy. This is the first time a partitioned black-box coupling is used for coupling free flow and porous-media flow. The coupling approach is numerically validated and different partitioned coupling approaches are compared with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005). https://doi.org/10.1017/s0962492904000212

    Article  MathSciNet  MATH  Google Scholar 

  2. Bungartz, H.J., Lindner, F., Gatzhammer, B., Mehl, M., et al.: preCICE - a fully parallel library for multi-physics surface coupling. Advances in Fluid-Structure Interaction. Comput. Fluids 141, 250–258 (2016). https://doi.org/10.1016/j.compfluid.2016.04.003

  3. Caiazzo, A., John, V., Wilbrandt, U.: On classical iterative subdomain methods for the Stokes-Darcy problem. Comput. Geosci. 18(5), 711–728 (2014). https://doi.org/10.1007/s10596-014-9418-y

    Article  MathSciNet  MATH  Google Scholar 

  4. Davis, T.A.: Algorithm 832: UMFPACK V4.3—an Unsymmetric-Pattern Multifrontal Method. ACM Trans. Math. Softw. 30(2), 196–199 (2004). https://doi.org/10.1145/992200.992206

  5. Degroote, J.: Partitioned simulation of fluid-structure interaction. Arch. Comput. Methods Eng. 20(3), 185–238 (2013). https://doi.org/10.1007/s11831-013-9085-5

    Article  MathSciNet  MATH  Google Scholar 

  6. Discacciati, M., Gerardo-Giorda, L.: Optimized Schwarz methods for the Stokes-Darcy coupling. IMA J. Numer. Anal. 38(4), 1959–1983 (2017). https://doi.org/10.1093/imanum/drx054

    Article  MathSciNet  MATH  Google Scholar 

  7. Discacciati, M., Quarteroni, A.: Navier-Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Rev. Mat. Complut. 22(2), 315–426 (2009). https://doi.org/10.5209/rev_REMA.2009.v22.n2.16263

  8. Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., et al.: DuMu\(^{\rm x}\): DUNE for multi-(phase, component, scale, physics,\(\ldots \)) flow and transport in porous media. Adv. Water Resour. 34(9), 1102–1112 (2011). https://doi.org/10.1016/j.advwatres.2011.03.007

  9. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8(12), 2182–2189 (1965). https://doi.org/10.1063/1.1761178

    Article  MathSciNet  MATH  Google Scholar 

  10. Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., et al.: DuMux 3—an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Comput Math Appl. (2020). https://doi.org/10.1016/j.camwa.2020.02.012

  11. Saffman, P.G.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50(2), 93–101 (1971). https://doi.org/10.1002/sapm197150293

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project Number 327154368—SFB 1313.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Jaust .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jaust, A., Weishaupt, K., Mehl, M., Flemisch, B. (2020). Partitioned Coupling Schemes for Free-Flow and Porous-Media Applications with Sharp Interfaces. In: Klöfkorn, R., Keilegavlen, E., Radu, F.A., Fuhrmann, J. (eds) Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples. FVCA 2020. Springer Proceedings in Mathematics & Statistics, vol 323. Springer, Cham. https://doi.org/10.1007/978-3-030-43651-3_57

Download citation

Publish with us

Policies and ethics