Skip to main content

Halftone Image Steganography with Distortion Measurement Based on Structural Similarity

  • Conference paper
  • First Online:
Digital Forensics and Watermarking (IWDW 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12022))

Included in the following conference series:

  • 1403 Accesses

Abstract

For halftone image data hiding, it is difficult to achieve good visual quality and statistical security when high embedding capacity is demanded. In this paper, a secure steganographic scheme for halftone image is proposed, which aims to minimize the embedding distortion on structural similarity. Structural distortions are the ones that affect the most the perception of degradation of a halftone image. To evaluate the structural distortions caused by flipping pixels, halftone image structural similarity (HSSIM) is introduced based on a human visual filter, which is trained by Least-Mean-Square (LMS) approach. Utilizing the HSSIM, a distortion measurement is proposed to evaluate the embedding distortions on both vision and statistics. To minimize the embedding distortions, syndrome-trellis code (STC) is employed in the embedding process. The experimental results have demonstrated that the proposed steganographic scheme can achieve high statistical security with good visual quality without degrading the embedding capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bas, P., Filler, T., Pevn, Y.T.: Break our steganographic system: the ins and outs of organizing boss. J. Am. Stat. Assoc. 96(454), 488–499 (2011)

    Google Scholar 

  2. Bayers, B.: An optimum method for two level rendition of continuous tone pictures. In: Proceedings of the IEEE International Communication Conference, pp. 2611–2615 (1973)

    Google Scholar 

  3. Chiew, K.L., Pieprzyk, J.: Binary image steganographic techniques classification based on multi-class steganalysis. In: Kwak, J., Deng, R.H., Won, Y., Wang, G. (eds.) ISPEC 2010. LNCS, vol. 6047, pp. 341–358. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12827-1_25

    Chapter  Google Scholar 

  4. Feng, B., Lu, W., Sun, W.: Secure binary image steganography based on minimizing the distortion on the texture. IEEE Trans. Inf. Forensics Secur. 10(2), 243–255 (2014)

    Article  Google Scholar 

  5. Feng, B., Lu, W., Sun, W.: Binary image steganalysis based on pixel mesh Markov transition matrix. J. Vis. Commun. Image Represent. 26(C), 284–295 (2015)

    Article  Google Scholar 

  6. Filler, T., Judas, J., Fridrich, J.: Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. Inf. Forensics Secur. 6(3), 920–935 (2011)

    Article  Google Scholar 

  7. Floyd, R.W., Steinberg, L.: Adaptive algorithm for spatial greyscale. In: Proceedings of SID, pp. 75–77 (1976)

    Google Scholar 

  8. Fu, M.S., Au, O.C.: Data hiding by smart pair toggling for halftone images. In: 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, Proceedings (Cat. No. 00CH37100), vol. 4, pp. 2318–2321. IEEE (2000)

    Google Scholar 

  9. Fu, M.S., Au, O.C.: Halftone image data hiding with intensity selection and connection selection. Signal Process. Image Commun. 16(10), 909–930 (2001)

    Article  Google Scholar 

  10. Fu, M.S., Au, O.C.: Data hiding watermarking for halftone images. IEEE Trans. Image Process. 11(4), 477–484 (2002)

    Article  Google Scholar 

  11. Fu, M.S., Au, O.C.L.: Data hiding in halftone images with parity coding. In: Security and Watermarking of Multimedia Contents III, vol. 4314, pp. 360–369. International Society for Optics and Photonics (2001)

    Google Scholar 

  12. Goyal, P., Gupta, M., Staelin, C., Fischer, M., Shacham, O., Allebach, J.P.: Clustered-dot halftoning with direct binary search. IEEE Trans. Image Process. 22, 473–487 (2013)

    Article  MathSciNet  Google Scholar 

  13. Guo, J.M.: Improved data hiding in halftone images with cooperating pair toggling human visual system. Int. J. Imaging Syst. Technol. 17(6), 328–332 (2007)

    Article  Google Scholar 

  14. Guo, J.M., Liu, Y.F.: Halftone-image security improving using overall minimal-error searching. IEEE Trans. Image Process. 20(10), 2800–2812 (2011)

    Article  MathSciNet  Google Scholar 

  15. Guo, J.M., Liu, Y.F., Chang, J.Y.: High efficient direct binary search using multiple lookup tables. In: 2012 19th IEEE International Conference on Image Processing, pp. 813–816. IEEE (2012)

    Google Scholar 

  16. Guo, M., Zhang, H.: High capacity data hiding for halftone image authentication. In: Shi, Y.Q., Kim, H.-J., Pérez-González, F. (eds.) IWDW 2012. LNCS, vol. 7809, pp. 156–168. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40099-5_14

    Chapter  Google Scholar 

  17. Jarvis, J.F., Judice, C.N., Ninke, W.H.: A survey of techniques for the display of continuous tone pictures on bilevel displays. Comput. Graph. Image Process. 5(1), 13–40 (1976)

    Article  Google Scholar 

  18. Kim, S.H., Allebach, J.P.: Impact of HVS models on model-based halftoning. IEEE Trans. Image Process. 11(3), 258–269 (2002)

    Article  Google Scholar 

  19. Knuth, D.E.: Digital halftones by dot diffusion. ACM Trans. Graph. (TOG) 6(4), 245–273 (1987)

    Article  MathSciNet  Google Scholar 

  20. Lien, B.K., Lan, Z.L.: Improved halftone data hiding scheme using Hilbert curve neighborhood toggling. In: International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 73–76 (2011)

    Google Scholar 

  21. Lien, B.K., Pei, W.D.: Reversible data hiding for ordered dithered halftone images. In: IEEE International Conference on Image Processing, pp. 4181–4184 (2009)

    Google Scholar 

  22. Lin, C., Lu, W., Huang, X., Liu, K., Sun, W., Lin, H.: Region duplication detection based on hybrid feature and evaluative clustering. Multimedia Tools Appl. 78(15), 20739–20763 (2019). https://doi.org/10.1007/s11042-019-7342-9

    Article  Google Scholar 

  23. Lin, C., et al.: Copy-move forgery detection using combined features and transitive matching. Multimedia Tools Appl. 78(21), 30081–30096 (2018). https://doi.org/10.1007/s11042-018-6922-4

    Article  Google Scholar 

  24. Liu, X., Lu, W., Liu, W., Luo, S., Liang, Y., Li, M.: Image deblocking detection based on a convolutional neural network. IEEE Access 7, 26432–26439 (2019)

    Article  Google Scholar 

  25. Liu, X., Lu, W., Zhang, Q., Huang, J., Shi, Y.Q.: Downscaling factor estimation on pre-JPEG compressed images. IEEE Trans. Circuits Syst. Video Technol. PP, 1 (2019)

    Google Scholar 

  26. Lu, W., He, L., Yeung, Y., Xue, Y., Liu, H., Feng, B.: Secure binary image steganography based on fused distortion measurement. IEEE Trans. Circuits Syst. Video Technol. 29, 1608–1618 (2018)

    Article  Google Scholar 

  27. Mannos, J., Sakrison, D.: The effects of a visual fidelity criterion of the encoding of images. IEEE Trans. Inf. Theory 20(4), 525–536 (1974)

    Article  Google Scholar 

  28. Mese, M., Vaidyanathan, P.P.: Optimized halftoning using dot diffusion and methods for inverse halftoning. IEEE Trans. Image Process. 9(4), 691–709 (2000)

    Article  Google Scholar 

  29. Pei, S.C., Guo, J.M.: High-capacity data hiding in halftone images using minimal-error bit searching and least-mean square filter. IEEE Trans. Image Process. 15(6), 1665–1679 (2006)

    Article  Google Scholar 

  30. Xue, Y., Liu, W., Lu, W., Yeung, Y., Liu, X., Liu, H.: Efficient halftone image steganography based on dispersion degree optimization. J. Real-Time Image Proc. 16, 601–609 (2018)

    Article  Google Scholar 

  31. Yeung, Y., Lu, W., Xue, Y., Huang, J., Shi, Y.Q.: Secure binary image steganography with distortion measurement based on prediction. IEEE Trans. Circuits Syst. Video Technol. PP, 1 (2019)

    Article  Google Scholar 

  32. Zhang, J., Lu, W., Yin, X., Liu, W., Yeung, Y.: Binary image steganography based on joint distortion measurement. J. Vis. Commun. Image Represent. 58, 600–605 (2019)

    Article  Google Scholar 

  33. Zhang, X., Allebach, J.P.: Quad-interleaved block level parallel direct binary search algorithm. Electron. Imaging 2016(20), 1–6 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. U1736118), the Key Areas R&D Program of Guangdong (No. 2019B010136002), the Key Scientific Research Program of Guangzhou (No. 201804020068), the Natural Science Foundation of Guangdong (No. 2016A030313350), the Special Funds for Science and Technology Development of Guangdong (No. 2016KZ010103), Shanghai Minsheng Science and Technology Support Program (17DZ1205500), Shanghai Sailing Program (17YF1420000), the Fundamental Research Funds for the Central Universities (No. 17lgjc45).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, W., Yin, X., Lu, W., Zhang, J. (2020). Halftone Image Steganography with Distortion Measurement Based on Structural Similarity. In: Wang, H., Zhao, X., Shi, Y., Kim, H., Piva, A. (eds) Digital Forensics and Watermarking. IWDW 2019. Lecture Notes in Computer Science(), vol 12022. Springer, Cham. https://doi.org/10.1007/978-3-030-43575-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43575-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43574-5

  • Online ISBN: 978-3-030-43575-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics