Skip to main content

Image Steganography Using an Eight-Element Neighborhood Gaussian Markov Random Field Model

  • Conference paper
  • First Online:
Digital Forensics and Watermarking (IWDW 2019)

Abstract

Currently, the design of cost functions which measure the embedding distortion becomes the main task left in steganography with the emergence of Syndrome-Trellis Codes. Whether heuristically designed, e.g., Hill, WOW, or statistical model-based, e.g., HUGO, MiPOD, the embedding distortion is almost a sum of each element’s distortion. This paper proposes a new non-additive cost function designed by incorporating an eight-element neighborhood Gaussian Markov Random Field Model (8-GMRF). This proposed scheme, which could be viewed as an extension to MiPOD, derives change probabilities from minimizing the total KL divergence with a given payload and then implements adaptive steganography. Experimental results demonstrate that the proposed 8-GMRF performs superior or comparable to some of the state-of-the-art schemes in resisting steganalysis detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, B., Wang, M., Huang, J.: A new cost function for spatial image steganography. In: Proceedings IEEE ICIP, Pairs, France, 27–30 October 2014

    Google Scholar 

  2. Filler, T., Judas, J., Fridrich, J.: Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE TIFS 6(3), 920–935 (2011)

    Google Scholar 

  3. Sedighi, V., Fridrich, J., Cogranne, R.: Content-adaptive pentary steganography using the multivariate generalized Gaussian cover model. In: Proceedings of the SPIE 9409, Media Watermarking, Security, and Forensics 2015, 9409H, 4 March 2015

    Google Scholar 

  4. Sedighi, V., Cogranne, R., Fridrich, J.: Content-adaptive steganography by minimizing statistical detectability. IEEE TIFS 11(2), 221–234 (2016)

    Google Scholar 

  5. Holub, V., Fridrich, J.: Designing steganographic distortion using directional filters. In: Fourth IEEE International Workshop on Information Forensics and Security (2012)

    Google Scholar 

  6. Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 161–177. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16435-4_13

    Chapter  Google Scholar 

  7. Pevny, T., Bas, P., Fridrich, J.: Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Secur. 5(2), 215–224 (2010)

    Article  Google Scholar 

  8. Fridrich, J., Kodovský, J.: Rich models for steganalysis of digital images. IEEE TIFS 7, 868–882 (2011)

    Google Scholar 

  9. Chen, L., Shi, Y.Q., Sutthiwan, P., Niu, X.: Non-uniform quantization in breaking HUGO. In: Shi, Y.Q., Kim, H.-J., Pérez-González, F. (eds.) IWDW 2013. LNCS, vol. 8389, pp. 48–62. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43886-2_4

    Chapter  Google Scholar 

  10. Fridrich, J., Kodovský, J.: Multivariate Gaussian model for designing additive distortion for steganography. In: Proceedings of the IEEE ICASSP, 26–31 May 2013

    Google Scholar 

  11. Denemark, T., Sedighi, V., Holub, V., Cogranne, R., Fridrich, J.: Selection-channel-aware rich model for steganalysis of digital images. In: Proceedings of the IEEE WIFS, Atlanta, GA, 3–5 December 2014

    Google Scholar 

  12. Holub, V., Fridrich, J.: Digital image steganography using universal distortion. In: Proceedings of the First ACM Workshop on Information Hiding and Multimedia Security, pp. 59–68. ACM (2013)

    Google Scholar 

  13. Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014(1), 1–13 (2014). https://doi.org/10.1186/1687-417X-2014-1

    Article  Google Scholar 

  14. Bas, P., Filler, T., Pevný, T.: “Break our steganographic system”: the ins and outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_5

    Chapter  Google Scholar 

  15. Kodovsky, J., Fridrich, J., Holub, V.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2), 432–444 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by National Natural Science Foundation of China under Grants 61772573 and U1736215, and in part by the Science and Technology Program of Guangzhou under Grants 201707010029 and 201804010265.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangqun Ni .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 A. Joint probability of one 8-element neighborhood GMRF block

Recall Fig. 1, which illustrates 9 pixels of one block with index \(\mathrm{{\{0}} \sim \mathrm{{8\}}}\). Every two pixels are adjacent if connected or independent if disconnected. For those independent (e.g. pixels, ij), we can easily obtain (14). Accordingly, we proceed with a group of pixels according to Markovianity shown in (15), which will be repeatedly used in this proof.

$$\begin{aligned} p(i,j) = p(i|j) \cdot p(j) = p(i) \cdot p(j) \end{aligned}$$
(14)
$$\begin{aligned} p(i,{j_1}...{j_m}) = p(i|{j_1}...{j_m}) \cdot p({j_1}...{j_m}) = p(i|{j_k},i \leftrightarrow {j_k}) \cdot p({j_1}...{j_m}) \end{aligned}$$
(15)

Firstly, it is obvious to get (16) using (15) and then take the second term of former formula repeatedly we can get (17). (18) is derived from (17).

$$\begin{aligned} p(0 \sim 8) = p(5|0 \sim 4,6 \sim 8) \cdot p(0 \sim 4,6 \sim 8) = p(5|0,1,2) \cdot p(0 \sim 4,6 \sim 8) \end{aligned}$$
(16)
$$\begin{aligned} p(0 \sim 4,6 \sim 8) = p(6|0,2,3) \cdot p(0 \sim 4,7,8), p(0 \sim 4,7,8) = p(8|0,1,4) \cdot p(0 \sim 4,7) \end{aligned}$$
$$\begin{aligned} p(0 \sim 4,7) = \frac{{p(0,1,3,4)}}{{p(0,1,3)}} \cdot p(0,1,2,3), p(0,1,2,3) = \frac{{p(0,1,2)}}{{p(0,2)}} \cdot p(0,2,3) \end{aligned}$$
(17)
$$\begin{aligned} p(0,1,3,4) = \frac{{p(0,3,4)}}{{p(0,4)}} \cdot p(0,1,4), p(0,1,3) = \frac{{p(0,1)}}{{p(0)}} \cdot p(0,3) \end{aligned}$$
(18)

Substitute (18) into (17), (17) into (16), \(p(0 \sim 8)\) can be formulated as:

$$\begin{aligned} p(0 \sim 8) = \frac{{p(1,0,2,5) \cdot p(3,0,2,6) \cdot p(3,0,4,7) \cdot p(1,0,4,8) \cdot p(0)}}{{p(0,1) \cdot p(0,2) \cdot p(0,3) \cdot p(0,4)}} \end{aligned}$$
(19)

1.2 B. \(2 \times 2\) steganographic Fisher Information matrix

Stimulated by one-dimensional steganographic Fisher Information (2) in MG, we construct \(2 \times 2\) steganographic Fisher Information matrix as following:

$$\begin{aligned} I_{ij}(0) = \left[ {\begin{array}{*{20}{c}} {I_{ij}^{(11)}(0)}&{}{I_{ij}^{(12)}(0)}\\ {I_{ij}^{(21)}(0)}&{}{I_{ij}^{(22)}(0)} \end{array}} \right] , \end{aligned}$$
(20)

where \(I_{ij}^{(12)}(0) = I_{ij}^{(21)}(0) = {\sum _{k,l}}\frac{1}{{{p_{k,l}}}}(\frac{{\partial {q_{k,l}}({\beta _i},{\beta _j})}}{{\partial {\beta _i}}}{|_{{\beta _i},{\beta _j} = 0}}) \cdot (\frac{{\partial {q_{k,l}}({\beta _i},{\beta _j})}}{{\partial {\beta _j}}}{|_{{\beta _i},{\beta _j} = 0}})\),

$$\begin{aligned}I_{ij}^{(11)}(0) = {\sum _{k,l}}\frac{1}{{{p_{k,l}}}}{(\frac{{\partial {q_{k,l}}({\beta _i},{\beta _j})}}{{\partial {\beta _i}}}{|_{{\beta _i},{\beta _j} = 0}})^2}, I_{ij}^{(22)}(0) = {\sum _{k,l}}\frac{1}{{{p_{k,l}}}}{(\frac{{\partial {q_{k,l}}({\beta _i},{\beta _j})}}{{\partial {\beta _j}}}{|_{{\beta _i},{\beta _j} = 0}})^2}.\end{aligned}$$

Note that \({p_{k,l}}\), i.e. \( p_{k,l}^{(i,j)}\), equals \(P\{ {x_i} = k,{x_j} = l\}\), which can seemed as a point in the two-dimensional Gaussian distribution \(f({x_i},{x_j})\) (21). \({x_i},{x_j},k,l\) are used as continuous for differential and integration in this proof. Given \({p_{k,l}} = f(k,l),{p_{k \pm 1,l}} = f(k \pm 1,l),{p_{k,l \pm 1}} = f(k,l \pm 1)\), we have the Taylor approximation at points \((k \pm 1,l),(k,l \pm 1)\):

$$\begin{aligned} f({x_i},{x_j}) = \frac{1}{{2\pi {\sigma _i}{\sigma _j}\sqrt{1 - \rho _{ij}^2} }}\exp ( - \frac{1}{{2(1 - \rho _{ij}^2)}}(\frac{{x_i^2}}{{\sigma _i^2}} - \frac{{2{\rho _{ij}}{x_i}{x_j}}}{{{\sigma _i}{\sigma _j}}} + \frac{{x_j^2}}{{\sigma _j^2}})). \end{aligned}$$
(21)
$$\begin{aligned} - 2{p_{k,l}} + {p_{k - 1,l}} + {p_{k + 1,l}} \approx \frac{{{\partial ^2}f({x_i},{x_j})}}{{\partial {x_i}^2}}{|_{{x_i} = k,{x_j} = 1}}, \end{aligned}$$
(22)
$$\begin{aligned} - 2{p_{k,l}} + {p_{k,l - 1}} + {p_{k,l + 1}} \approx \frac{{{\partial ^2}f({x_i},{x_j})}}{{\partial {x_j}^2}}{|_{{x_i} = k,{x_j} = 1}}. \end{aligned}$$
(23)

After substituting (21)–(23) and (8) into (20), we can finally derive:

$$\begin{aligned} I_{ij}^{(11)}(0) = \sum \limits _{k,l} {\frac{{{{( - 2{p_{k,l}} + {p_{k - 1,l}} + {p_{k + 1,l}})}^2}}}{{{p_{k,l}}}} \approx \int \limits _k {\int \limits _l {{{(\frac{{{\partial ^2}f({x_i},{x_j})}}{{\partial {x_i}^2}}{|_{{x_i} = k,{x_j} = l}})}^2}\frac{{dkdl}}{{f({x_i},{x_j})}}} } } \end{aligned}$$
$$\begin{aligned} I_{ij}^{(22)}(0) = \sum \limits _{k,l} {\frac{{{{( - 2{p_{k,l}} + {p_{k,l - 1}} + {p_{k,l + 1}})}^2}}}{{{p_{k,l}}}} \approx \int \limits _k {\int \limits _l {{{(\frac{{{\partial ^2}f({x_i},{x_j})}}{{\partial {x_j}^2}}{|_{{x_i} = k,{x_j} = l}})}^2}\frac{{dkdl}}{{f({x_i},{x_j})}}} } } \end{aligned}$$
$$\begin{aligned} I_{ij}^{(12)}(0) = I_{ij}^{(21)}(0) = \sum \limits _{k,l} {\frac{{( - 2{p_{k,l}} + {p_{k - 1,l}} + {p_{k + 1,l}})( - 2{p_{k,l}} + {p_{k,l - 1}} + {p_{k,l + 1}})}}{{{p_{k,l}}}}} \end{aligned}$$
$$\begin{aligned} \approx \int \limits _k {\int \limits _l {(\frac{{{\partial ^2}f({x_i},{x_j})}}{{\partial {x_i}^2}}{|_{{x_i} = k,{x_j} = l}})(\frac{{{\partial ^2}f({x_i},{x_j})}}{{\partial {x_j}^2}}{|_{{x_i} = k,{x_j} = l}})\frac{{dkdl}}{{f({x_i},{x_j})}}} } \end{aligned}$$
$$\begin{aligned} I_{ij}^{(11)}(0)\approx \frac{2}{{{\sigma _i}^2{{(1 - {\rho _{ij}}^2)}^2}}},I_{ij}^{(22)}(0)\approx \frac{2}{{{\sigma _j}^2{{(1 - {\rho _{ij}}^2)}^2}}},I_{ij}^{(12)}(0) = I_{ij}^{(21)}(0)\approx \frac{2{\rho _{ij}}^2}{{{\sigma _i}{\sigma _j}{{(1 - {\rho _{ij}}^2)}^2}}} \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tong, Y., Ni, J., Su, W. (2020). Image Steganography Using an Eight-Element Neighborhood Gaussian Markov Random Field Model. In: Wang, H., Zhao, X., Shi, Y., Kim, H., Piva, A. (eds) Digital Forensics and Watermarking. IWDW 2019. Lecture Notes in Computer Science(), vol 12022. Springer, Cham. https://doi.org/10.1007/978-3-030-43575-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43575-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43574-5

  • Online ISBN: 978-3-030-43575-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics