Skip to main content

Risk and Return of Equity and the Capital Asset Pricing Model

  • Chapter
  • First Online:
Quantitative Corporate Finance

Abstract

Individual investors must be compensated for bearing risk. It seems intuitive to the reader that there should be a direct linkage between the risk of a security and its rate of return. We are interested in securing the maximum return for a given level of risk or the minimum risk for a given level of return. The concept of such risk-return analysis is the efficient frontier of Harry Markowitz (1952, 1959). If an investor can invest in a government security, which is backed by the taxing power of the federal government, then that government security is relatively risk-free. The 90-day treasury bill rate is used as the basic risk-free rate. Supposedly the taxing power of the federal government eliminates default risk of government debt issues. A liquidity premium is paid for longer-term maturities, due to the increasing level of interest rate risk. Investors are paid interest payments, as determined by the bond’s coupon rate, and may earn market price appreciation on longer bonds if market rates fall or losses vice versa. During the period from 1928 to 2017, treasury bills returned 3.44%, longer-term (10-year treasury) government bonds earned 5.15%, and corporate stocks, as measured by the stock of the S&P 500 Index, earned 11.53% annually, as measured by the mean annual return. The annualized standard deviations are 3.06%, 7.72%, and 19.662%, respectively, for treasury bills, treasury bonds, and S&P stocks. The risk-return trade-off has been relevant for the 1928–2017 period. The correlation coefficient between annual returns for treasury bills and the S&P 500 stock returns was −.030 for the 1928–2017 time period. This was essentially no correlation between treasury bills and large stocks, as measured by the S&P 500 stock. The correlation coefficient between annual returns for treasury bonds and the S&P 500 stock returns was 0.30 for the 1928–2017 time period. Why do corporate stocks offer investors such returns?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ibbottson and Sinquefield, Stocks, Bonds, and Bills Yearbook, 2018.

  2. 2.

    One generally needs 30 observations for normality of residuals to occur, from the central limit theorem of statistics.

References

  • Arnott, R. (1985). The use and misuse of consensus earnings. Journal of Portfolio Management, 18–27.

    Google Scholar 

  • Basu, S. (1977). Investment performance of common stocks in relation to their price earnings ratios: A test of market efficiency. Journal of Finance, 32, 663–682.

    Article  Google Scholar 

  • Bloch, M., Guerard Jr., J. B., Markowitz, H. M., Todd, P., & Xu, G.-L. (1993). A comparison of some aspects of the U.S. and Japanese equity markets. Japan and the World Economy, 5, 3–26.

    Article  Google Scholar 

  • Brown, L. D. (1999 and 2008). Annotated I/B/E/S Bibliography.

    Google Scholar 

  • Bruce, B., & Epstein, C. B. (1994). The handbook of corporate earnings analysis. Chicago: Probus Publishing Company.

    Google Scholar 

  • Elton, E. J., Gruber, M. J., & Gultekin, M. (1981). Expectations and share prices. Management Science, 27, 975–987.

    Article  Google Scholar 

  • Fama, E. F., & French, K. R. (1992). Cross-sectional variation in expected stock returns. Journal of Finance, 47, 427–465.

    Article  Google Scholar 

  • Fama, E. F., & French, K. R. (1995). Size and the book-to-market factors in earnings and returns. Journal of Finance, 50, 131–155.

    Article  Google Scholar 

  • Fama, E. F., & French, K. R. (2008). Dissecting anomalies. Journal of Finance, 63, 1653–1678.

    Article  Google Scholar 

  • Graham, B., & Dodd, D. (1934). Security analysis: Principles and technique (first ed.). New York: McGraw-Hill Book Company.

    Google Scholar 

  • Graham, B., Dodd, D., & Cottle, S. (1962). Security analysis: Principles and technique (4th ed.). New York: McGraw-Hill Book Company.

    Google Scholar 

  • Grinold, R., & Kahn, R. (1999). Active portfolio management. New York: McGraw-Hill/Irwin.

    Google Scholar 

  • Guerard Jr., J. B. (1997). Is there a cost to being socially responsible in investing? Journal of Investing, 6, 11–18.

    Google Scholar 

  • Guerard Jr., J. B., Gillam, R. A., Markowitz, H., Xu, G., Deng, S., & Wang, E. (2018). Data mining corrections testing in Chinese stocks. Interfaces, 48, 108–120.

    Article  Google Scholar 

  • Guerard Jr., J. B., Gultekin, M., & Stone, B. K. (1997). The role of fundamental data and analysts’ earnings breadth, forecasts, and revisions in the creation of efficient portfolios. In A. Chen, (ed.) Research in finance 15. Greenwich, CT: JAI Press

    Google Scholar 

  • Guerard Jr., J. B., & Mark, A. (2003). The optimization of efficient portfolios: The case for an R&D quadratic term. In A. Chen (Ed.), Research in finance (Vol. 20). Bingley, UK: Emerald Group.

    Chapter  Google Scholar 

  • Guerard Jr., J. B., & Schwartz, E. (2007). Quantitative corporate finance. New York: Springer.

    Google Scholar 

  • Guerard Jr., J. B., & Mark, A. (2020). Earnings forecasts and revisions, price momentum, and fundamental data: Further explorations in financial anomalies. In C. F. Lee (Ed.), Handbook of financial econometrics. Singapore: World Scientific Publishers.

    Google Scholar 

  • Guerard Jr., J. B., Markowitz, H. M., & Xu, G. (2015). Earnings forecasting in a global stock selection model and efficient portfolio construction and management. International Journal of Forecasting, 31, 550–560.

    Article  Google Scholar 

  • Guerard Jr., J. B., Rachev, R. T., & Shao, B. (2013). Efficient global portfolios: Big data and investment universes. IBM Journal of Research and Development, 57(5), Paper 11.

    Article  Google Scholar 

  • Guerard Jr., J. B., & Stone, B. K. (1992). Composite forecasting of annual corporate earnings. In A. Chen (Ed.), Research in finance (Vol. 10). Greenwich, CT: JAI Press.

    Google Scholar 

  • Guerard Jr., J. B., Markowitz, H. M. & Xu, G. (2014). The role of effective corporate decisions in the creation of efficient portfolios. IBM Journal of Research and Development, 58(4), 6.1– 6.11.

    Google Scholar 

  • Guerard Jr., J. B., Takano, M., & Yamane, Y. (1993). The development of efficient portfolios in Japan with particular emphasis on sales and earnings forecasting. Annals of Operations Research, 45, 91–108.

    Google Scholar 

  • Haugen, R. A., & Baker, N. (1996). Communality in the determinants of expected results. Journal of Financial Economics, 41, 401–440.

    Article  Google Scholar 

  • Haugen. R. A. (1999). The Inefficient Stock Markets: what pays off and why upper saddle River: Prentice - Hall.

    Google Scholar 

  • Haugen, R., & Baker, N. (2010). Case closed. In J. B. Guerard (Ed.), The handbook of portfolio construction: Contemporary applications of Markowitz techniques. New York: Springer.

    Google Scholar 

  • Haugen, R. A. (1995). The New Finance: The case Against Efficient Markets. Englewood Cliffs, NJ: Prentice - Hall.

    Google Scholar 

  • Hawawini, G., & Keim, D. B. (1995). On the predictability of common stock returns: World-wide evidence. In R. A. Jarrow, V. Maksimovic, & W. T. Ziemba (eds.), Handbooks in Operations Research and Management Science. Finance, 9, 497–537.

    Google Scholar 

  • Hawkins, E. H., Chamberlain, S. C., & Daniel, W. E. (1984). Earnings expectations and security prices. Financial Analysts Journal, 40(5), 24–38.

    Article  Google Scholar 

  • King, B. F. (1966). Market and industry factors in stock price behavior. Journal of Business 39, 139–191.

    Google Scholar 

  • Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Review of Economics and Statistics, 47, 51–68.

    Article  Google Scholar 

  • Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7, 77–91.

    Google Scholar 

  • Markowitz, H. M. (1959). Portfolio selection: Efficient diversification of investment. Cowles Foundation Monograph No.16. New York: Wiley.

    Google Scholar 

  • Maronna, R. A., Martin, R. D., Yohai, V. J., & Salibian-Barrera, M. (2019). Robust Statistics; Theory and Methods (with R). New York: Springer.

    Google Scholar 

  • Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica, 34, 768–783.

    Article  Google Scholar 

  • Nerlove, M. (1968). Factors affecting differences among rates if return on investments in individual common stocks. Review of Economics and Statistics, 67, 313–331.

    Google Scholar 

  • Rosenberg, B. (1974). Extra-market components of covariance in security returns. Journal of Financial and Quantitative Analysis, 9, 263–274.

    Google Scholar 

  • Rosenberg, B., & Marathe, V. (1979). Tests of capital asset pricing hypotheses. In H. Levy (Ed.), Research in finance (Vol. 1). Greenwich, CT: JAI Press.

    Google Scholar 

  • Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13, 341–360.

    Article  Google Scholar 

  • Ross, S. A., & Roll, R. (1980). An empirical investigation of the arbitrage pricing theory. Journal of Finance, 35(2), 1071–1103.

    Google Scholar 

  • Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19, 425–442.

    Google Scholar 

  • Wheeler, L. B. (1994). Changes in consensus earnings estimates and their impact on stock returns. In B. Bruce & C. B. Epstein (Eds.), The handbook of corporate earnings analysis. Chicago: Probus.

    Google Scholar 

  • Ziemba, W. T. (1990). Fundamental Factors in US and Japanese Stock Returns. Berkeley Program in Finance, Santa Barbara.

    Google Scholar 

  • Ziemba, W.T. & Schwartz, S. (1993). Invest Japan, Chicago, Probus.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix: The Three-Asset Case

Appendix: The Three-Asset Case

Let us now examine a three-asset portfolio construction process using IBM, Dominion Resources, and BA securities:

$$ \mathrm{E}\left(\mathrm{Rp}\right)=\sum \limits^{\begin{array}{c}i=1\\ {}N\end{array}}{\mathrm{x}}_{\mathrm{i}}\mathrm{E}\left({\mathrm{R}}_{\mathrm{i}}\right) $$
(14)
$$ {\sigma}_p^2=\sum \limits_{\mathrm{i}=1}^{\mathrm{N}}\sum \limits^{\begin{array}{c}j=1\\ {}N\end{array}}{\mathrm{x}}_{\mathrm{i}}{\mathrm{x}}_{\mathrm{j}}{\upsigma}_{\mathrm{i}\mathrm{j}} $$
(15)
$$ {\displaystyle \begin{array}{c}\mathrm{E}\left(\mathrm{Rp}\right)={\mathrm{x}}_1\mathrm{E}\left({\mathrm{R}}_1\right)+{\mathrm{x}}_2\mathrm{E}\left({\mathrm{R}}_2\right)+{\mathrm{x}}_3\mathrm{E}\left({\mathrm{R}}_3\right)\\ {}\kern2.25em \mathrm{let}\;{\mathrm{x}}_3=1-{\mathrm{x}}_1-{\mathrm{x}}_2\\ {}\mathrm{E}\left(\mathrm{Rp}\right)={\mathrm{x}}_1\mathrm{E}\left({\mathrm{R}}_1\right)+{\mathrm{x}}_2\mathrm{E}\left({\mathrm{R}}_2\right)+\left(1-{\mathrm{x}}_1-{\mathrm{x}}_2\right)\mathrm{E}\left({\mathrm{R}}_3\right)\\ {}{\sigma}_p^2={{\mathrm{x}}_1}^2{\upsigma_1}^2+{{\mathrm{x}}_2}^2{\upsigma_2}^2+{\upsigma_3}^2{{\mathrm{x}}_3}^2+2{\mathrm{x}}_1{\mathrm{x}}_2{\upsigma}_{12}+2{\mathrm{x}}_1{\mathrm{x}}_3{\upsigma}_{23}+2{\mathrm{x}}_2{\mathrm{x}}_3{\upsigma}_{23}\\ {}={{\mathrm{x}}_1}^2{\upsigma_1}^2+{{\mathrm{x}}_2}^2{\upsigma_2}^2+{\left(1-{\mathrm{x}}_1-{\mathrm{x}}_2\right)}^2{\upsigma_3}^2+2{\mathrm{x}}_1{\mathrm{x}}_2{\upsigma}_{12}+2{\mathrm{x}}_1\left(1-{\mathrm{x}}_1-{\mathrm{x}}_2\right){\upsigma}_{13}\\ {}\kern1em +2{\mathrm{x}}_2\left(1-{\mathrm{x}}_1-{\mathrm{x}}_2\right){\upsigma}_{23}\\ {}={{\mathrm{x}}_1}^2{\upsigma_1}^2+{{\mathrm{x}}_2}^2{\upsigma_2}^2+\left(1-{\mathrm{x}}_1-{\mathrm{x}}_2\right)\left(1-{\mathrm{x}}_1-{\mathrm{x}}_2\right){\upsigma_3}^2+2{\mathrm{x}}_1{\mathrm{x}}_2{\upsigma}_{12}+2{\mathrm{x}}_1{\upsigma}_{13}\\ {}\kern1em -2{{\mathrm{x}}_1}^2{\upsigma}_{13}-2{\mathrm{x}}_1{\mathrm{x}}_2{\upsigma}_{13}+2{\mathrm{x}}_2{\upsigma}_{23}-2{\mathrm{x}}_1{\mathrm{x}}_2{\upsigma}_{23}-2{{\mathrm{x}}_2}^2{\upsigma}_{23}\\ {}={{\mathrm{x}}_1}^2{\upsigma_1}^2+{{\mathrm{x}}_2}^2{\upsigma_2}^2+\left(1-2{\mathrm{x}}_1-2{\mathrm{x}}_2+2{\mathrm{x}}_1{\mathrm{x}}_2+{{\mathrm{x}}_1}^2+{{\mathrm{x}}_2}^2\right){\upsigma_3}^2+2{\mathrm{x}}_1{\mathrm{x}}_2{\upsigma}_{12}\\ {}\kern1em +2{\mathrm{x}}_1{\upsigma}_{13}-2{{\mathrm{x}}_1}^2{\upsigma}_{13}-2{\mathrm{x}}_1{\mathrm{x}}_2{\upsigma}_{13}+2{\mathrm{x}}_2{\upsigma}_{23}-2{\mathrm{x}}_1{\mathrm{x}}_2{\upsigma}_{23}-2{{\mathrm{x}}_2}^2{\upsigma}_{23}\end{array}} $$
(16)
$$ {\displaystyle \begin{array}{l}\frac{\partial {\sigma}_p^2}{\partial {x}_1}=2{\mathrm{x}}_1\left({\upsigma_1}^2+{\upsigma_3}^2-2{\upsigma}_{13}\right)+{\mathrm{x}}_2\left(2{\upsigma_3}^2+2{\upsigma}_{12}-2{\upsigma}_{13}-2{\upsigma}_{23}\right)-2{\upsigma_3}^2+2{\upsigma}_{13}=0\\ {}\frac{\partial {\sigma}_p^2}{\partial {x}_2}=2{\mathrm{x}}_2\left({\upsigma_2}^2+{\upsigma_3}^2-2{\upsigma}_{23}\right)+{\mathrm{x}}_1\left(2{\upsigma_3}^2+2{\upsigma}_{12}-2{\upsigma}_{13}-2{\upsigma}_{23}\right)-2{\upsigma_3}^2+2{\upsigma}_{23}=0\end{array}} $$

Let’s assume

A graph of expected return versus portfolio risk. It consists of several plots in the form of a curve that has an increasing trend. A few points labeled S 1, S 2, and S 3 are of a different shade.
A stacked bar graph of portfolio weight versus expected return. It consists of portfolio weight values for S 1, S 2, and S 3. The S 3 value increases as the expected return value increases.

The optimal portfolio weights involve selling IBM short and going long on DuPont and Dominion. How does the portfolio using optimal weights compare to an equally weighted portfolio of the three assets?

The equally weighted portfolio has an expected return of 14.9% and a 13.42% standard deviation.

$$ \mathrm{E}\left({\mathrm{R}}_{\mathrm{p}}\right)=.333\left(.110+.095+.242\right)=.149 $$
$$ {\displaystyle \begin{array}{c}{\sigma}_p^2={(.333)}^2{(.0167)}^2+{(.333)}^2(.0407)\\ {}\kern1em +{(.333)}^2(.0799)+2(.333)(.333)\left(\hbox{--}.0103\right)\\ {}\kern1em +2(.333)(.333)\left(\hbox{--}.0041\right)+2(.333)(.333)(.0303)\end{array}} $$
$$ {\displaystyle \begin{array}{c}{\sigma}_p^2=.0019+.0045+.0081+\left(\hbox{--}.0023\right)\\ {}+\left(\hbox{--}.0009\right)+.0067=.0180\end{array}} $$
$$ {\upsigma}_{\mathrm{p}}=.1342 $$

The optimally weighted portfolio has an expected return of

$$ {\displaystyle \begin{array}{c}\mathrm{E}\left({\mathrm{R}}_{\mathrm{p}}\right)=.795(.110)+.2517(.095)+\left(\hbox{--}.0467\right)(.242)\\ {}=.0875+.0244+\left(\hbox{--}.0113\right)\\ {}=.1006\\ {}{\sigma}_p^2={(.795)}^2(.0167)+{(.2517)}^2(.0407)+{\left(\hbox{--}.0467\right)}^2\\ {}\kern1em (.0799)+2(.795)(.2517)\left(\hbox{--}.0103\right)\\ {}\kern1em +2(.795)\left(\hbox{--}.0467\right)\left(\hbox{--}.0041\right)+2(.2517)\left(\hbox{--}.0467\right)(.0303)\\ {}=.0106+.0026+.0002+\left(\hbox{--}.0041\right)+.0003+\left(\hbox{--}.0007\right)\\ {}{\sigma}_p^2=.0089\\ {}{\upsigma}_{\mathrm{p}}=.0943\end{array}} $$

The optimally weighted portfolio has an expected return of 10.06% and a standard deviation of 9.43%. Portfolio risk can be significantly reduced through diversification (Table 16).

Table 16 Modeling TCBUER by OLS longer lags of LEI and WkUNCL time series and estimation of saturation (IIS and SIS) variables

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guerard, J.B., Saxena, A., Gultekin, M. (2021). Risk and Return of Equity and the Capital Asset Pricing Model. In: Quantitative Corporate Finance. Springer, Cham. https://doi.org/10.1007/978-3-030-43547-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43547-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43546-2

  • Online ISBN: 978-3-030-43547-9

  • eBook Packages: HistoryHistory (R0)

Publish with us

Policies and ethics